Horovod
Important
Horovod and HorovodRunner are now deprecated. Releases after 15.4 LTS ML will not have this package pre-installed. For distributed deep learning, Databricks recommends using TorchDistributor for distributed training with PyTorch or the tf.distribute.Strategy
API for distributed training with TensorFlow.
Horovod is a distributed training framework for TensorFlow, Keras, and PyTorch. Azure Databricks supports distributed deep learning training using HorovodRunner and the horovod.spark
package. For Spark ML pipeline applications using Keras or PyTorch, you can use the horovod.spark
estimator API.
Requirements
Databricks Runtime ML.
Use Horovod
The following articles provide general information about distributed deep learning with Horovod and example notebooks illustrating how to use HorovodRunner and the horovod.spark
package.
- HorovodRunner: distributed deep learning with Horovod
- HorovodRunner examples
horovod.spark
: distributed deep learning with Horovod
Install a different version of Horovod
To upgrade or downgrade Horovod from the pre-installed version in your ML cluster, you must recompile Horovod by following these steps:
- Uninstall the current version of Horovod.
%pip uninstall -y horovod
- If using a GPU-accelerated cluster, install CUDA development libraries required to compile Horovod. To ensure compatibility, leave the package versions unchanged.
%sh
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
dpkg -i ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
apt-get update
apt-get install --allow-downgrades --no-install-recommends -y \
cuda-nvml-dev-11-0=11.0.167-1 \
cuda-nvcc-11-0=11.0.221-1 \
cuda-cudart-dev-11-0=11.0.221-1 \
cuda-libraries-dev-11-0=11.0.3-1 \
libnccl-dev=2.11.4-1+cuda11.5\
libcusparse-dev-11-0=11.1.1.245-1
- Download the desired version of Horovod's source code and compile with the appropriate flags. If you don't need any of the extensions (such as
HOROVOD_WITH_PYTORCH
), you can remove those flags.
CPU
%sh
HOROVOD_VERSION=v0.21.3 # Change as necessary
git clone --recursive https://github.com/horovod/horovod.git --branch ${HOROVOD_VERSION}
cd horovod
rm -rf build/ dist/
HOROVOD_WITH_MPI=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 \
# For Databricks Runtime 8.4 ML and below, replace with /databricks/conda/envs/databricks-ml/bin/python
sudo /databricks/python3/bin/python setup.py bdist_wheel
readlink -f dist/horovod-*.whl
GPU
%sh
HOROVOD_VERSION=v0.21.3 # Change as necessary
git clone --recursive https://github.com/horovod/horovod.git --branch ${HOROVOD_VERSION}
cd horovod
rm -rf build/ dist/
HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_CUDA_HOME=/usr/local/cuda HOROVOD_WITH_MPI=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 \
# For Databricks Runtime 8.4 ML and below, replace with /databricks/conda/envs/databricks-ml-gpu/bin/python
sudo /databricks/python3/bin/python setup.py bdist_wheel
readlink -f dist/horovod-*.whl
- Use
%pip
to reinstall Horovod by specifying the Python wheel path from the previous command's output.0.21.3
is shown in this example.
%pip install --no-cache-dir /databricks/driver/horovod/dist/horovod-0.21.3-cp38-cp38-linux_x86_64.whl
Troubleshoot Horovod installation
Problem: Importing horovod.{torch|tensorflow}
raises ImportError: Extension horovod.{torch|tensorflow} has not been built
Solution: Horovod comes pre-installed on Databricks Runtime ML, so this error typically occurs if updating an environment goes wrong. The error indicates that Horovod was installed before a required library (PyTorch or TensorFlow). Since Horovod is compiled during installation, horovod.{torch|tensorflow}
will not get compiled if those packages aren't present during the installation of Horovod.
To fix the issue, follow these steps:
- Verify that you are on a Databricks Runtime ML cluster.
- Ensure that the PyTorch or TensorFlow package is already installed.
- Uninstall Horovod (
%pip uninstall -y horovod
). - Install
cmake
(%pip install cmake
). - Reinstall
horovod
.