JSON path expression

Applies to: check marked yes Databricks SQL check marked yes Databricks Runtime

A JSON path expression is used to extract values from a JSON string or a VARIANT using the : operator

Syntax

{ { identifier | [ field ] | [ * ] | [ index ] }
  [ . identifier | [ field ] | [ * ] | [ index ] ] [...] }

The brackets surrounding field, * and index are actual brackets and not indicating an optional syntax.

Parameters

  • identifier: An identifier of a JSON field. For JSON STRING types, the identifier is case insensitive. For VARIANT types, it is case-sensitive.
  • [ field ]: A bracketed case-sensitive STRING literal identifying a JSON field.
  • [ * ]: Identifying all elements in a JSON array. This syntax is not supported for VARIANT.
  • [ index ]: An integer literal identifying a specific element in a 0-based JSON array.

Returns

A STRING if the expression being navigated is a STRING. A VARIANT if the expression being navigated is a VARIANT.

When a JSON field exists with an un-delimited null value, you will receive a SQL NULL value for that column, not a null text value.

You can use :: operator to cast values to basic data types.

Use the from_json function to cast nested results into more complex data types, such as arrays or structs.

Notes

You can use an un-delimited identifier to refer to a JSON field if the name does not contain spaces or special characters, and there is no field in the JSON STRING of the same name in a different case.

Use a delimited identifier if there is no field of the same name in a different case.

The [ field ] notation can always be used, but requires you to exactly match the case of the field.

If Azure Databricks cannot uniquely identify a field an error is returned. If no match is found for any field Azure Databricks returns NULL.

A NULL value can be encoded within a VARIANT, and that value is not a SQL NULL. Therefore, parse_json('null') IS NULL is false, but is_variant_null(parse_json('null')) is true. A VARIANT encoded null can be converted to a SQL NULL by casting it to some type. For example, parse_json('null')::int IS NULL is true.

Examples

The following examples use the data created with the statement in Example data.

In this section:

Extract using identifier and delimiters

> SELECT raw:owner, raw:OWNER, raw:['owner'], raw:['OWNER'] FROM store_data;
  amy  amy  amy  NULL

-- Use backticks to escape special characters. References are case insensitive when you use backticks.
-- Use brackets to make them case sensitive.
> SELECT raw:`zip code`, raw:`Zip Code`, raw:['fb:testid'] FROM store_data;
  94025      94025      1234

Extract nested fields

-- Use dot notation
> SELECT raw:store.bicycle FROM store_data;
  '{ "price":19.95, "color":"red" }'

-- Use brackets
> SELECT raw:['store']['bicycle'] FROM store_data;
  '{ "price":19.95, "color":"red" }'

Extract values from arrays

-- Index elements
> SELECT raw:store.fruit[0], raw:store.fruit[1] FROM store_data;
  '{ "weight":8, "type":"apple" }'  '{ "weight":9, "type":"pear" }'

-- Extract subfields from arrays
> SELECT raw:store.book[*].isbn FROM store_data;
  '[ null, "0-553-21311-3", "0-395-19395-8" ]'

-- Access arrays within arrays or structs within arrays
> SELECT raw:store.basket[*],
         raw:store.basket[*][0] first_of_baskets,
         raw:store.basket[0][*] first_basket,
         raw:store.basket[*][*] all_elements_flattened,
         raw:store.basket[0][2].b subfield
  FROM store_data;
  basket                       first_of_baskets   first_basket          all_elements_flattened            subfield
 ---------------------------- ------------------ --------------------- --------------------------------- ----------
  [                            [                  [                     [1,2,{"b":"y","a":"x"},3,4,5,6]   y
    [1,2,{"b":"y","a":"x"}],     1,                 1,
    [3,4],                       3,                 2,
    [5,6]                        5                  {"b":"y","a":"x"}
  ]                            ]                  ]

NULL behavior

> SELECT '{"key":null}':key IS NULL sql_null, '{"key":"null"}':key IS NULL;
  true          false

Cast values

-- price is returned as a double, not a string
> SELECT raw:store.bicycle.price::double FROM store_data
  19.95

-- use from_json to cast into more complex types
> SELECT from_json(raw:store.bicycle, 'price double, color string') bicycle FROM store_data
  '{ "price":19.95, "color":"red" }'

-- the column returned is an array of string arrays
> SELECT from_json(raw:store.basket[*], 'array<array<string>>') baskets FROM store_data
  '[
    ["1","2","{\"b\":\"y\",\"a\":\"x\"}]",
    ["3","4"],
    ["5","6"]
  ]'

VARIANT expressions

-- Using JSON paths for VARIANT
> SELECT raw:store.bicycle FROM store_data_variant;
  '{ "price":19.95, "color":"red" }'

-- Extracting from VARIANT arrays
> SELECT raw:store.fruit[0], raw_variant:store.fruit[1] FROM store_data_variant;
  '{ "weight":8, "type":"apple" }'  '{ "weight":9, "type":"pear" }'

-- SQL NULL behavior of VARIANT NULL values
> SELECT
  parse_json(NULL) IS NULL AS sql_null,
  parse_json('null') IS NULL AS variant_null,
  parse_json('{ "field_a": null }'):field_a IS NULL AS variant_null_value,
  parse_json('{ "field_a": null }'):missing IS NULL AS missing_sql_value_null
  true  false  false  true

-- price is returned as a double, not a VARIANT
> SELECT raw:store.bicycle.price::double FROM store_data_variant
  19.95

Example data

> CREATE TABLE store_data AS SELECT
'{
   "store":{
      "fruit": [
        {"weight":8,"type":"apple"},
        {"weight":9,"type":"pear"}
      ],
      "basket":[
        [1,2,{"b":"y","a":"x"}],
        [3,4],
        [5,6]
      ],
      "book":[
        {
          "author":"Nigel Rees",
          "title":"Sayings of the Century",
          "category":"reference",
          "price":8.95
        },
        {
          "author":"Herman Melville",
          "title":"Moby Dick",
          "category":"fiction",
          "price":8.99,
          "isbn":"0-553-21311-3"
        },
        {
          "author":"J. R. R. Tolkien",
          "title":"The Lord of the Rings",
          "category":"fiction",
          "reader":[
            {"age":25,"name":"bob"},
            {"age":26,"name":"jack"}
          ],
          "price":22.99,
          "isbn":"0-395-19395-8"
        }
      ],
      "bicycle":{
        "price":19.95,
        "color":"red"
      }
    },
    "owner":"amy",
    "zip code":"94025",
    "fb:testid":"1234"
 }' as raw

 > CREATE TABLE store_data_variant AS SELECT parse_json(raw) FROM store_data;