User-defined aggregate functions - Scala
This article contains an example of a UDAF and how to register it for use in Apache Spark SQL. See User-defined aggregate functions (UDAFs) for more details.
Implement a UserDefinedAggregateFunction
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
class GeometricMean extends UserDefinedAggregateFunction {
// This is the input fields for your aggregate function.
override def inputSchema: org.apache.spark.sql.types.StructType =
StructType(StructField("value", DoubleType) :: Nil)
// This is the internal fields you keep for computing your aggregate.
override def bufferSchema: StructType = StructType(
StructField("count", LongType) ::
StructField("product", DoubleType) :: Nil
)
// This is the output type of your aggregatation function.
override def dataType: DataType = DoubleType
override def deterministic: Boolean = true
// This is the initial value for your buffer schema.
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
buffer(1) = 1.0
}
// This is how to update your buffer schema given an input.
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
buffer(0) = buffer.getAs[Long](0) + 1
buffer(1) = buffer.getAs[Double](1) * input.getAs[Double](0)
}
// This is how to merge two objects with the bufferSchema type.
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getAs[Long](0) + buffer2.getAs[Long](0)
buffer1(1) = buffer1.getAs[Double](1) * buffer2.getAs[Double](1)
}
// This is where you output the final value, given the final value of your bufferSchema.
override def evaluate(buffer: Row): Any = {
math.pow(buffer.getDouble(1), 1.toDouble / buffer.getLong(0))
}
}
Register the UDAF with Spark SQL
spark.udf.register("gm", new GeometricMean)
Use your UDAF
// Create a DataFrame and Spark SQL table
import org.apache.spark.sql.functions._
val ids = spark.range(1, 20)
ids.createOrReplaceTempView("ids")
val df = spark.sql("select id, id % 3 as group_id from ids")
df.createOrReplaceTempView("simple")
-- Use a group_by statement and call the UDAF.
select group_id, gm(id) from simple group by group_id
// Or use DataFrame syntax to call the aggregate function.
// Create an instance of UDAF GeometricMean.
val gm = new GeometricMean
// Show the geometric mean of values of column "id".
df.groupBy("group_id").agg(gm(col("id")).as("GeometricMean")).show()
// Invoke the UDAF by its assigned name.
df.groupBy("group_id").agg(expr("gm(id) as GeometricMean")).show()