Nota:
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
索引是通过启用对集合中特定字段的快速访问来提高数据检索速度的结构。 本文介绍如何在各种嵌套级别执行索引编制,并回顾如何有效地查看这些索引的利用率。
索引编制方案
我们将根据定义的示例 json 上下文处理示例场景。
{
"_id": "e79b564e-48b1-4f75-990f-e62de2449239",
"car_id":"AZ-9874532",
"car_info": {
"make": "Mustang",
"model": "GT Fastback",
"year": 2024,
"registration": {
"license_plate": "LJX386",
"state": "WV",
"registration_datetime": {
"$date": "2024-01-10T01:16:44.000Z"
},
"expiration_datetime": {
"$date": "2034-01-10T01:16:44.000Z"
}
}
},
"rental_history": [
{
"rental_id": "RT63857499825952",
"customer_id": "CX8716",
"start_date": {
"$date": "2024-02-29T01:16:44.000Z"
},
"end_date": {
"$date": "2024-03-04T16:54:44.000Z"
},
"pickup_location": { "type": "Point", "coordinates": [ -73.97, 40.77 ]
},
"drop_location": { "type": "Point", "coordinates": [ -73.96, 40.78 ]
},
"total_price": 232.56944444444443,
"daily_rent": 50,
"complains": [
{
"complain_id": "CMP638574998259520",
"issue": "Strange odor inside the car.",
"reported_datetime": {
"$date": "2024-03-03T20:11:44.000Z"
},
"reported_medium": "Website",
"resolutions": [
{
"resolution_datetime": {
"$date": "2024-03-03T20:20:44.000Z"
},
"solution": "Inspect for any leftover food, spills, or trash that might be causing the odor. Contact the rental agency.",
"resolved": true
}
]
}
],
"accidents": [
{
"accident_id": "ACC376184",
"date": {
"$date": "2024-03-03T01:47:44.000Z"
},
"description": "Collisions with Soft Barriers: Accidents involving hitting bushes, shrubs, or other soft barriers.",
"repair_cost": 147
}
]
},
{
"rental_id": "RT63857499825954",
"customer_id": "CX1412",
"start_date": {
"$date": "2033-11-18T01:16:44.000Z"
},
"end_date": {
"$date": "2033-11-25T21:11:44.000Z"
},
"pickup_location": { "type": "Point", "coordinates": [ 40, 5 ]
},
"drop_location": { "type": "Point", "coordinates": [ 41, 11 ]
},
"total_price": 305.3645833333333,
"daily_rent": 39,
"complains": [
{
"complain_id": "CMP638574998259540",
"issue": "Unresponsive infotainment system.",
"reported_datetime": {
"$date": "2033-11-19T17:55:44.000Z"
},
"reported_medium": "Agency",
"resolutions": []
}
],
"accidents": null
}
],
"junk": null
}
为根字段编制索引
Azure DocumentDB 允许对根属性编制索引。 该示例允许通过 sampleColl 搜索 car_id.
CarData> db.sampleColl.createIndex({"car_id":1})
执行计划允许查看在字段car_id上explain创建的索引的利用率。
CarData> db.sampleColl.find({"car_id":"ZA-XWB804"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_id' : 'ZA-XWB804' } }})",
explainCommandPlanningTimeMillis: 0.156,
explainCommandExecTimeMillis: 37.956,
dataSize: '32 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 8700,
inputStage: {
stage: 'IXSCAN',
indexName: 'car_id_1',
isBitmap: true,
indexFilterSet: [ { '$eq': { car_id: 'ZA-XWB804' } } ],
estimatedTotalKeysExamined: 174
}
}
},
ok: 1
}
为嵌套属性编制索引
Azure DocumentDB 允许为嵌入的文档属性编制索引。 该示例在嵌套文档中registration_datetime的字段registration上创建索引。
CarData> db.sampleColl.createIndex({"car_info.registration.registration_datetime":1})
通过使用 explain 查看执行计划,可以提供关于索引扫描的深入见解。
CarData> db.sampleColl.find({"car_info.registration.registration_datetime":
{ $gte : new ISODate("2024-05-01")
,$lt: ISODate("2024-05-07")
}
}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.registration.registration_datetime' : { '$gte' : ISODate('2024-05-01T00:00:00Z'), '$lt' : ISODate('2024-05-07T00:00:00Z') } } }})",
explainCommandPlanningTimeMillis: 0.095,
explainCommandExecTimeMillis: 42.703,
dataSize: '4087 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 4350,
inputStage: {
stage: 'IXSCAN',
indexName: 'car_info.registration.registration_datetime_1',
isBitmap: true,
indexFilterSet: [
{
'$range': {
'car_info.registration.registration_datetime': {
min: ISODate("2024-05-01T00:00:00.000Z"),
max: ISODate("2024-05-07T00:00:00.000Z"),
minInclusive: true,
maxInclusive: false
}
}
}
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
为根处的数组编制索引
Azure DocumentDB 允许为定义为数组的根属性编制索引。 让我们考虑以下 json 示例。
{
"_id": ObjectId("58f56170ee9d4bd5e610d644"),
"id": 1,
"num": 001,
"name": "Bulbasaur",
"img": "http://www.serebii.net/pokemongo/pokemon/001.png",
"type": [ 'Grass', 'Poison' ],
"height": '0.71 m',
"weight": '6.9 kg',
"avg_spawns": 69,
"spawn_time": "20:00",
"multipliers": [ 1.58 ],
"weaknesses": [ "Fire", "Ice", "Flying", "Psychic"],
"next_evolution": [ { "num": "002", "name": "Ivysaur" }, { "num": "003", "name": "Venusaur" }]
}
在我们的示例中,我们在数组字段上weaknesses创建索引,并正在查看数组中是否存在所有三个值 GroundWaterFire。
Cosmicworks> db.Pokemon.createIndex({'weaknesses':1})
Cosmicworks> db.Pokemon.find({"weaknesses":
{$all:["Ground","Water","Fire"]}
}
).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'Pokemon', 'filter' : { 'weaknesses' : { '$all' : ['Ground', 'Water', 'Fire'] } } }})",
explainCommandPlanningTimeMillis: 10.161,
explainCommandExecTimeMillis: 21.64,
dataSize: '906 bytes',
queryPlanner: {
namespace: 'Cosmicworks.Pokemon',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 50,
inputStage: {
stage: 'IXSCAN',
indexName: 'weaknesses_1',
isBitmap: true,
indexFilterSet: [
{ '$all': { weaknesses: [ 'Ground', 'Water', 'Fire' ] } }
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
注释
对于 MongoServerError:索引键太大。
请创建支持请求以启用后台索引,后跟 enableLargeIndexKeys
db.runCommand({ createIndexes: "collectionName", indexes: [{"index_spec"}], enableLargeIndexKeys: true });
为嵌套数组编制索引
Azure DocumentDB 允许为嵌套数组编制索引。 该示例在 resolutions 数组中 complains 现有的字段上创建索引。
CarData> db.sampleColl.createIndex({"rental_history.complains.resolutions":1})
我们与 explain 一起审查计划,以确定所有租赁,未向客户提供解决方案。
CarData> db.sampleColl.find({"rental_history.complains.resolutions":{ $exists: false, $ne: []}}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'rental_history.complains.resolutions' : { '$exists' : false, '$ne' : [] } } }})",
explainCommandPlanningTimeMillis: 0.12,
explainCommandExecTimeMillis: 48.721000000000004,
dataSize: '1747 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 1933,
inputStage: {
stage: 'IXSCAN',
indexName: 'rental_history.complains.resolutions_1',
isBitmap: true,
indexFilterSet: [
{
'$exists': { 'rental_history.complains.resolutions': false }
},
{ '$ne': { 'rental_history.complains.resolutions': [] } }
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
为数组中的特定字段编制索引
Azure DocumentDB 允许为数组中的字段编制索引。 示例在date数组中的accidents字段上创建索引。
CarData> db.sampleColl.createIndex({"rental_history.accidents.date":1})
示例查询评估特定时间范围内的事故,并显示利用了在date属性上创建的索引。
CarData> db.sampleColl.find({"rental_history.accidents.date":
{ $gte : ISODate("2024-05-01")
, $lt : ISODate("2024-05-07")
}
}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'rental_history.accidents.date' : { '$gte' : ISODate('2024-05-01T00:00:00Z'), '$lt' : ISODate('2024-05-07T00:00:00Z') } } }})",
explainCommandPlanningTimeMillis: 19.816,
explainCommandExecTimeMillis: 48.359,
dataSize: '12 MB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 4350,
inputStage: {
stage: 'IXSCAN',
indexName: 'rental_history.accidents.date_1',
isBitmap: true,
indexFilterSet: [
{
'$range': {
'rental_history.accidents.date': {
min: ISODate("2024-05-01T00:00:00.000Z"),
max: ISODate("2024-05-07T00:00:00.000Z"),
minInclusive: true,
maxInclusive: false
}
}
}
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
注释
我们目前正在增强对嵌套数组的支持。 在某些边缘情况下,特定的索引操作可能会导致错误。
排除嵌套字段时的通配符索引
Azure DocumentDB 支持通配符索引。 此示例允许我们排除对文档 car_info内所有嵌套字段编制索引。
// Excludes all the nested sub-document property
CarData> db.sampleColl.createIndex( {"$**":1}
,{"wildcardProjection":
{ "car_info.make":0
,"car_info.model":0
,"car_info.registration":0
,"car_info.year":0
,"rental_history":0
}
}
)
执行计划不显示对字段 model 执行的查询的支持,该查询在创建通配符索引时被排除。
CarData> db.sampleColl.find({"car_info.model":"GT Fastback"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.model' : 'GT Fastback' } }})",
explainCommandPlanningTimeMillis: 10.879,
explainCommandExecTimeMillis: 374.25100000000003,
dataSize: '0 bytes',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'car_info.model': 'GT Fastback' } } ],
estimatedTotalKeysExamined: 8700
}
},
ok: 1
}
排除嵌套对象时的通配符索引
Azure DocumentDB 支持通配符索引。 此示例允许我们从文档中排除嵌套对象。
// Wildcard index excluding nested object
[mongos] CarData> db.sampleColl.createIndex( {"$**":1},
{"wildcardProjection":
{ "car_info":0
,"rental_history":0
}
}
)
执行计划不支持对文档中嵌套字段makecar_info执行的查询。
CarData> db.sampleColl.find({"car_info.make":"Mustang"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.make' : 'Mustang' } }})",
explainCommandPlanningTimeMillis: 21.271,
explainCommandExecTimeMillis: 337.475,
dataSize: '0 bytes',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'car_info.make': 'Mustang' } } ],
estimatedTotalKeysExamined: 8700
}
},
ok: 1
}
排除包含嵌套数组的字段时的通配符索引
通配符索引示例允许从嵌套数组中排除字段。
pokemon我们使用突出显示 json 格式的集合。
{
{
"_id": ObjectId("58f56170ee9d4bd5e610d644"),
"id": 1,
"num": 001,
"name": "Bulbasaur",
"img": "http://www.serebii.net/pokemongo/pokemon/001.png",
"type": [ 'Grass', 'Poison' ],
"height": '0.71 m',
"weight": '6.9 kg',
"avg_spawns": 69,
"spawn_time": "20:00",
"multipliers": [ 1.58 ],
"weaknesses": [ "Fire", "Ice", "Flying", "Psychic"],
"next_evolution": [ { "num": "002", "name": "Ivysaur" }, { "num": "003", "name": "Venusaur" }]
}
}
我们正在为 json 中的所有字段创建索引,从数组中排除一个 num 字段和 name 字段。
Cosmicworks> db.Pokemon.createIndex( {"$**":1},
{"wildcardProjection":
{ "id":0
,"name":0
,"multipliers":0
,"next_evolution.num":0
,"next_evolution.name":0
}
}
)
解释计划在查询 name 数组中的 next_evolution 字段时不显示索引利用率。
Cosmicworks> db.Pokemon.find({"next_evolution.name":"Venusaur"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'Pokemon', 'filter' : { 'next_evolution.name' : 'Venusaur' } }})",
explainCommandPlanningTimeMillis: 0.799,
explainCommandExecTimeMillis: 0.869,
dataSize: '1090 bytes',
queryPlanner: {
namespace: 'Cosmicworks.Pokemon',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'next_evolution.name': 'Venusaur' } } ],
estimatedTotalKeysExamined: 76
}
},
ok: 1
}