dbscan_fl()

函数 dbscan_fl() 是一种 UDF(用户定义的函数),它使用 DBSCAN 算法对数据集进行聚类化。

先决条件

  • 必须在群集上启用 Python 插件。 这是函数中使用的内联 Python 所必需的。

语法

T | invoke dbscan_fl(features, cluster_col, epsilon, min_samples, metric, metric_params)

详细了解语法约定

参数

客户 类型​​ 必需 说明
features dynamic ✔️ 一个数组,其中包含要用于聚类的特征列的名称。
cluster_col string ✔️ 存储每个记录的输出群集 ID 的列的名称。
epsilon real ✔️ 被视为邻居的两个样本之间的最大距离。
min_samples int 邻域内一个点被视为核心点的样本数量。
metric string 计算点之间的距离时要使用的指标。
metric_params dynamic 指标函数的额外关键字自变量。

函数定义

可以通过将函数的代码嵌入为查询定义的函数,或将其创建为数据库中的存储函数来定义函数,如下所示:

使用以下 let 语句定义函数。 不需要任何权限。

重要

let 语句不能独立运行。 它必须后跟一个表格表达式语句。 若要运行 kmeans_fl() 的工作示例,请参阅示例

let dbscan_fl=(tbl:(*), features:dynamic, cluster_col:string, epsilon:double, min_samples:int=10,
                       metric:string='minkowski', metric_params:dynamic=dynamic({'p': 2}))
{
    let kwargs = bag_pack('features', features, 'cluster_col', cluster_col, 'epsilon', epsilon, 'min_samples', min_samples,
                          'metric', metric, 'metric_params', metric_params);
    let code = ```if 1:

        from sklearn.cluster import DBSCAN
        from sklearn.preprocessing import StandardScaler

        features = kargs["features"]
        cluster_col = kargs["cluster_col"]
        epsilon = kargs["epsilon"]
        min_samples = kargs["min_samples"]
        metric = kargs["metric"]
        metric_params = kargs["metric_params"]

        df1 = df[features]
        mat = df1.values
        
        # Scale the dataframe
        scaler = StandardScaler()
        mat = scaler.fit_transform(mat)

        # see https://docs.scipy.org/doc/scipy/reference/spatial.distance.html for the various distance metrics

        dbscan = DBSCAN(eps=epsilon, min_samples=min_samples, metric=metric, metric_params=metric_params) # 'minkowski', 'chebyshev'
        labels = dbscan.fit_predict(mat)

        result = df
        result[cluster_col] = labels
    ```;
    tbl
    | evaluate python(typeof(*),code, kwargs)
};
// Write your query to use the function here.

示例

以下示例使用 invoke 运算符运行函数。

有三个群集的人工数据集群集

若要使用查询定义的函数,请在嵌入的函数定义后调用它。

let dbscan_fl=(tbl:(*), features:dynamic, cluster_col:string, epsilon:double, min_samples:int=10,
                       metric:string='minkowski', metric_params:dynamic=dynamic({'p': 2}))
{
    let kwargs = bag_pack('features', features, 'cluster_col', cluster_col, 'epsilon', epsilon, 'min_samples', min_samples,
                          'metric', metric, 'metric_params', metric_params);
    let code = ```if 1:

        from sklearn.cluster import DBSCAN
        from sklearn.preprocessing import StandardScaler

        features = kargs["features"]
        cluster_col = kargs["cluster_col"]
        epsilon = kargs["epsilon"]
        min_samples = kargs["min_samples"]
        metric = kargs["metric"]
        metric_params = kargs["metric_params"]

        df1 = df[features]
        mat = df1.values
        
        # Scale the dataframe
        scaler = StandardScaler()
        mat = scaler.fit_transform(mat)

        # see https://docs.scipy.org/doc/scipy/reference/spatial.distance.html for the various distance metrics

        dbscan = DBSCAN(eps=epsilon, min_samples=min_samples, metric=metric, metric_params=metric_params) # 'minkowski', 'chebyshev'
        labels = dbscan.fit_predict(mat)

        result = df
        result[cluster_col] = labels
    ```;
    tbl
    | evaluate python(typeof(*),code, kwargs)
};
union 
(range x from 1 to 100 step 1 | extend x=rand()+3, y=rand()+2),
(range x from 101 to 200 step 1 | extend x=rand()+1, y=rand()+4),
(range x from 201 to 300 step 1 | extend x=rand()+2, y=rand()+6)
| extend cluster_id=int(null)
| invoke dbscan_fl(pack_array("x", "y"), "cluster_id", epsilon=0.6, min_samples=4, metric_params=dynamic({'p':2}))
| render scatterchart with(series=cluster_id)

屏幕截图显示有三个群集的人工数据集的 DBSCAN 群集散点图。