kmeans_fl()

适用于:✅Azure 数据资源管理器

函数 kmeans_fl() 是一种 UDF(用户定义的函数),它使用 k-means 算法对数据集进行聚类化。

先决条件

  • 必须在群集上启用 Python 插件。 这是函数中使用的内联 Python 所必需的。

语法

T | invoke kmeans_fl(k, features, cluster_col)

详细了解语法约定

参数

客户 类型​​ 必需 说明
k int ✔️ 群集数。
features dynamic ✔️ 一个数组,其中包含要用于聚类的特征列的名称。
cluster_col string ✔️ 存储每个记录的输出群集 ID 的列的名称。

函数定义

可以通过将函数的代码嵌入为查询定义的函数,或将其创建为数据库中的存储函数来定义函数,如下所示:

使用以下 let 语句定义函数。 不需要任何权限。

重要

let 语句不能独立运行。 它必须后跟一个表格表达式语句。 若要运行 kmeans_fl() 的工作示例,请参阅示例

let kmeans_fl=(tbl:(*), k:int, features:dynamic, cluster_col:string)
{
    let kwargs = bag_pack('k', k, 'features', features, 'cluster_col', cluster_col);
    let code = ```if 1:

        from sklearn.cluster import KMeans

        k = kargs["k"]
        features = kargs["features"]
        cluster_col = kargs["cluster_col"]

        km = KMeans(n_clusters=k)
        df1 = df[features]
        km.fit(df1)
        result = df
        result[cluster_col] = km.labels_
    ```;
    tbl
    | evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.

示例

以下示例使用 invoke 运算符运行函数。

将有三个群集的人工数据集群集化

若要使用查询定义的函数,请在嵌入的函数定义后调用它。

let kmeans_fl=(tbl:(*), k:int, features:dynamic, cluster_col:string)
{
    let kwargs = bag_pack('k', k, 'features', features, 'cluster_col', cluster_col);
    let code = ```if 1:

        from sklearn.cluster import KMeans

        k = kargs["k"]
        features = kargs["features"]
        cluster_col = kargs["cluster_col"]

        km = KMeans(n_clusters=k)
        df1 = df[features]
        km.fit(df1)
        result = df
        result[cluster_col] = km.labels_
    ```;
    tbl
    | evaluate python(typeof(*), code, kwargs)
};
OccupancyDetection
| extend cluster_id=int(null)
union
(range x from 1 to 100 step 1 | extend x=rand()+3, y=rand()+2),
(range x from 101 to 200 step 1 | extend x=rand()+1, y=rand()+4),
(range x from 201 to 300 step 1 | extend x=rand()+2, y=rand()+6)
| invoke kmeans_fl(3, bag_pack("x", "y"), "cluster_id")
| render scatterchart with(series=cluster_id)

屏幕截图显示有三个群集的人工数据集的 K-Means 群集散点图。