normality_test_fl()
适用于:✅Azure 数据资源管理器
函数 normality_test_fl()
是一个执行正态性检验的 UDF(用户定义函数)。
先决条件
- 必须在群集上启用 Python 插件。 这是函数中使用的内联 Python 所必需的。
语法
T | invoke normality_test_fl(
data,
test_statistic,
p_value)
详细了解语法约定。
参数
客户 | 类型 | 必需 | Description |
---|---|---|---|
data | string |
✔️ | 包含要用于测试的数据的列的名称。 |
test_statistic | string |
✔️ | 用来存储结果的测试统计值的列的名称。 |
p_value | string |
✔️ | 用来存储结果的 p-value 的列的名称。 |
函数定义
可以通过将函数的代码嵌入为查询定义的函数,或将其创建为数据库中的存储函数来定义函数,如下所示:
使用以下 let 语句定义函数。 不需要任何权限。
let normality_test_fl = (tbl:(*), data:string, test_statistic:string, p_value:string)
{
let kwargs = bag_pack('data', data, 'test_statistic', test_statistic, 'p_value', p_value);
let code = ```if 1:
from scipy import stats
data = kargs["data"]
test_statistic = kargs["test_statistic"]
p_value = kargs["p_value"]
def func(row):
statistics = stats.normaltest(row[data])
return statistics[0], statistics[1]
result = df
result[[test_statistic, p_value]] = df.apply(func, axis=1, result_type = "expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.
示例
以下示例使用 invoke 运算符运行函数。
若要使用查询定义的函数,请在嵌入的函数定义后调用它。
let normality_test_fl = (tbl:(*), data:string, test_statistic:string, p_value:string)
{
let kwargs = bag_pack('data', data, 'test_statistic', test_statistic, 'p_value', p_value);
let code = ```if 1:
from scipy import stats
data = kargs["data"]
test_statistic = kargs["test_statistic"]
p_value = kargs["p_value"]
def func(row):
statistics = stats.normaltest(row[data])
return statistics[0], statistics[1]
result = df
result[[test_statistic, p_value]] = df.apply(func, axis=1, result_type = "expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
datatable(id:string, sample1:dynamic) [
'Test #1', dynamic([23.64, 20.57, 20.42, 27.1, 22.12, 33.56, 23.64, 20.57]),
'Test #2', dynamic([20.85, 21.89, 23.41, 35.09, 30.02, 26.52, 20.85, 21.89]),
'Test #3', dynamic([20.13, 20.5, 21.7, 22.02, 32.2, 32.79, 33.9, 34.22, 20.13, 20.5])
]
| extend test_stat= 0.0, p_val = 0.0
| invoke normality_test_fl('sample1', 'test_stat', 'p_val')
输出
id | sample1 | test_stat | p_val |
---|---|---|---|
Test #1 | [23.64, 20.57, 20.42, 27.1, 22.12, 33.56, 23.64, 20.57] | 7.4881873153941036 | 0.023657060728893706 |
Test #2 | [20.85, 21.89, 23.41, 35.09, 30.02, 26.52, 20.85, 21.89] | 3.29982750330276 | 0.19206647332255408 |
Test #3 | [20.13, 20.5, 21.7, 22.02, 32.2, 32.79, 33.9, 34.22, 20.13, 20.5] | 6.9868433851364324 | 0.030396685911910585 |