two_sample_t_test_fl()

适用于:✅Azure 数据资源管理器

函数 two_sample_t_test_fl() 是一个用户定义的函数 (UDF),它执行双样本 T 检验

注意

假设要比较的两个数据集具有不同的方差,我们建议使用本机 welch_test()

先决条件

  • 必须在群集上启用 Python 插件。 这是函数中使用的内联 Python 所必需的。

语法

T | invoke two_sample_t_test_fl(data1, data2, test_statistic,p_value, equal_var)

详细了解语法约定

参数

客户 类型​​ 必需 说明
data1 string ✔️ 包含要用于测试的第一组数据的列的名称。
data2 string ✔️ 包含要用于测试的第二组数据的列的名称。
test_statistic string ✔️ 用来存储结果的测试统计值的列的名称。
p_value string ✔️ 用来存储结果的 p-value 的列的名称。
equal_var bool 如果为 true(默认值),则执行假设总体方差相等的标准独立双样本检验。 如果为 false,则执行不假设总体方差相等的 Welch T 检验。 如前所述,请考虑使用本机 welch_test()

函数定义

可以通过将函数的代码嵌入为查询定义的函数,或将其创建为数据库中的存储函数来定义函数,如下所示:

使用以下 let 语句定义函数。 不需要任何权限。

重要

let 语句不能独立运行。 它必须后跟一个表格表达式语句。 若要运行 two_sample_t_test_fl() 的工作示例,请参阅示例

let two_sample_t_test_fl = (tbl:(*), data1:string, data2:string, test_statistic:string, p_value:string, equal_var:bool=true)
{
    let kwargs = bag_pack('data1', data1, 'data2', data2, 'test_statistic', test_statistic, 'p_value', p_value, 'equal_var', equal_var);
    let code = ```if 1:
        from scipy import stats
        import pandas
        
        data1 = kargs["data1"]
        data2 = kargs["data2"]
        test_statistic = kargs["test_statistic"]
        p_value = kargs["p_value"]
        equal_var = kargs["equal_var"]
        
        def func(row):
            statistics = stats.ttest_ind(row[data1], row[data2], equal_var=equal_var)
            return statistics[0], statistics[1]
        result = df
        result[[test_statistic, p_value]]  = df.apply(func, axis=1, result_type = "expand")
    ```;
    tbl
    | evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.

示例

以下示例使用 invoke 运算符运行函数。

若要使用查询定义的函数,请在嵌入的函数定义后调用它。

let two_sample_t_test_fl = (tbl:(*), data1:string, data2:string, test_statistic:string, p_value:string, equal_var:bool=true)
{
    let kwargs = bag_pack('data1', data1, 'data2', data2, 'test_statistic', test_statistic, 'p_value', p_value, 'equal_var', equal_var);
    let code = ```if 1:
        from scipy import stats
        import pandas
        
        data1 = kargs["data1"]
        data2 = kargs["data2"]
        test_statistic = kargs["test_statistic"]
        p_value = kargs["p_value"]
        equal_var = kargs["equal_var"]
        
        def func(row):
            statistics = stats.ttest_ind(row[data1], row[data2], equal_var=equal_var)
            return statistics[0], statistics[1]
        result = df
        result[[test_statistic, p_value]]  = df.apply(func, axis=1, result_type = "expand")
    ```;
    tbl
    | evaluate python(typeof(*), code, kwargs)
};
datatable(id:string, sample1:dynamic, sample2:dynamic) [
'Test #1', dynamic([23.64, 20.57, 20.42]), dynamic([27.1, 22.12, 33.56]),
'Test #2', dynamic([20.85, 21.89, 23.41]), dynamic([35.09, 30.02, 26.52]),
'Test #3', dynamic([20.13, 20.5, 21.7, 22.02]), dynamic([32.2, 32.79, 33.9, 34.22])
]
| extend test_stat= 0.0, p_val = 0.0
| invoke two_sample_t_test_fl('sample1', 'sample2', 'test_stat', 'p_val')

输出

ID sample1 sample2 test_stat p_val
Test #1 [23.64, 20.57, 20.42] [27.1, 22.12, 33.56] -1.7415675457565645 0.15655096653487446
Test #2 [20.85, 21.89, 23.41] [35.09, 30.02, 26.52], -3.2711673491022579 0.030755331219276136
Test #3 [20.13, 20.5, 21.7, 22.02] [32.2, 32.79, 33.9, 34.22] -18.5515946201742 1.5823717131966134E-06