本文包含有关大规模实现预期的建议,以及预期支持的高级模式的示例。 这些模式将多个数据集与预期结合使用,并要求用户了解具体化视图、流式处理表和期望的语法和语义。
有关预期行为和语法的基本概述,请参阅 使用管道预期管理数据质量。
可移植和可重用的期望
Databricks 在实现提高可移植性并减少维护负担的预期时,建议遵循以下最佳做法:
建议 | 影响 |
---|---|
将期望定义与管道逻辑分开存储。 | 轻松将期望应用于多个数据集或管道。 在不修改管道源代码的情况下更新、审核和维护预期。 |
添加自定义标记以创建相关期望组。 | 根据标记筛选预期。 |
在类似的数据集中一致地应用预期。 | 跨多个数据集和管道使用相同的期望来评估相同的逻辑。 |
以下示例演示如何使用 Delta 表或字典创建中心预期存储库。 然后,自定义 Python 函数将这些期望应用于示例管道中的数据集:
Delta 表
以下示例创建一个名为 rules
的表来维护规则:
CREATE OR REPLACE TABLE
rules
AS SELECT
col1 AS name,
col2 AS constraint,
col3 AS tag
FROM (
VALUES
("website_not_null","Website IS NOT NULL","validity"),
("fresh_data","to_date(updateTime,'M/d/yyyy h:m:s a') > '2010-01-01'","maintained"),
("social_media_access","NOT(Facebook IS NULL AND Twitter IS NULL AND Youtube IS NULL)","maintained")
)
以下 Python 示例根据表中的规则 rules
定义数据质量预期。
get_rules()
函数从 rules
表读取规则并返回一个 Python 字典,其中包含与传递给该函数的 tag
参数匹配的规则。
在此示例中,使用 @dlt.expect_all_or_drop()
修饰器应用字典来强制实施数据质量约束。
例如,将从 validity
表中删除任何与使用 raw_farmers_market
标记的规则不符的记录:
import dlt
from pyspark.sql.functions import expr, col
def get_rules(tag):
"""
loads data quality rules from a table
:param tag: tag to match
:return: dictionary of rules that matched the tag
"""
df = spark.read.table("rules").filter(col("tag") == tag).collect()
return {
row['name']: row['constraint']
for row in df
}
@dlt.table
@dlt.expect_all_or_drop(get_rules('validity'))
def raw_farmers_market():
return (
spark.read.format('csv').option("header", "true")
.load('/databricks-datasets/data.gov/farmers_markets_geographic_data/data-001/')
)
@dlt.table
@dlt.expect_all_or_drop(get_rules('maintained'))
def organic_farmers_market():
return (
spark.read.table("raw_farmers_market")
.filter(expr("Organic = 'Y'"))
)
Python 模块
以下示例创建一个 Python 模块来维护规则。 对于此示例,请将此代码存储在与用作管道源代码的笔记本相同的文件夹中的 rules_module.py
文件中:
def get_rules_as_list_of_dict():
return [
{
"name": "website_not_null",
"constraint": "Website IS NOT NULL",
"tag": "validity"
},
{
"name": "fresh_data",
"constraint": "to_date(updateTime,'M/d/yyyy h:m:s a') > '2010-01-01'",
"tag": "maintained"
},
{
"name": "social_media_access",
"constraint": "NOT(Facebook IS NULL AND Twitter IS NULL AND Youtube IS NULL)",
"tag": "maintained"
}
]
以下 Python 示例根据文件中定义的 rules_module.py
规则定义数据质量预期。 该 get_rules()
函数返回一个 Python 字典,其中包含与传递给它的自变量匹配 tag
的规则。
在此示例中,使用 @dlt.expect_all_or_drop()
修饰器应用字典来强制实施数据质量约束。
例如,将从 validity
表中删除任何与使用 raw_farmers_market
标记的规则不符的记录:
import dlt
from rules_module import *
from pyspark.sql.functions import expr, col
def get_rules(tag):
"""
loads data quality rules from a table
:param tag: tag to match
:return: dictionary of rules that matched the tag
"""
return {
row['name']: row['constraint']
for row in get_rules_as_list_of_dict()
if row['tag'] == tag
}
@dlt.table
@dlt.expect_all_or_drop(get_rules('validity'))
def raw_farmers_market():
return (
spark.read.format('csv').option("header", "true")
.load('/databricks-datasets/data.gov/farmers_markets_geographic_data/data-001/')
)
@dlt.table
@dlt.expect_all_or_drop(get_rules('maintained'))
def organic_farmers_market():
return (
spark.read.table("raw_farmers_market")
.filter(expr("Organic = 'Y'"))
)
行计数验证
以下示例验证 table_a
和 table_b
之间行计数的相等性,以检查在转换期间是否有数据丢失。
Python
@dlt.view(
name="count_verification",
comment="Validates equal row counts between tables"
)
@dlt.expect_or_fail("no_rows_dropped", "a_count == b_count")
def validate_row_counts():
return spark.sql("""
SELECT * FROM
(SELECT COUNT(*) AS a_count FROM table_a),
(SELECT COUNT(*) AS b_count FROM table_b)""")
SQL
CREATE OR REFRESH MATERIALIZED VIEW count_verification(
CONSTRAINT no_rows_dropped EXPECT (a_count == b_count)
) AS SELECT * FROM
(SELECT COUNT(*) AS a_count FROM table_a),
(SELECT COUNT(*) AS b_count FROM table_b)
缺少记录检测
以下示例验证 report
表中是否存在所有预期记录:
Python
@dlt.view(
name="report_compare_tests",
comment="Validates no records are missing after joining"
)
@dlt.expect_or_fail("no_missing_records", "r_key IS NOT NULL")
def validate_report_completeness():
return (
spark.read.table("validation_copy").alias("v")
.join(
spark.read.table("report").alias("r"),
on="key",
how="left_outer"
)
.select(
"v.*",
"r.key as r_key"
)
)
SQL
CREATE OR REFRESH MATERIALIZED VIEW report_compare_tests(
CONSTRAINT no_missing_records EXPECT (r_key IS NOT NULL)
)
AS SELECT v.*, r.key as r_key FROM validation_copy v
LEFT OUTER JOIN report r ON v.key = r.key
主键唯一性
以下示例验证跨表的主键约束:
Python
@dlt.view(
name="report_pk_tests",
comment="Validates primary key uniqueness"
)
@dlt.expect_or_fail("unique_pk", "num_entries = 1")
def validate_pk_uniqueness():
return (
spark.read.table("report")
.groupBy("pk")
.count()
.withColumnRenamed("count", "num_entries")
)
SQL
CREATE OR REFRESH MATERIALIZED VIEW report_pk_tests(
CONSTRAINT unique_pk EXPECT (num_entries = 1)
)
AS SELECT pk, count(*) as num_entries
FROM report
GROUP BY pk
架构演变模式
以下示例演示如何处理其他列的架构演变。 在迁移数据源或处理多个版本的上游数据时,请使用此模式,确保在强制实施数据质量时实现向后兼容性:
Python
@dlt.table
@dlt.expect_all_or_fail({
"required_columns": "col1 IS NOT NULL AND col2 IS NOT NULL",
"valid_col3": "CASE WHEN col3 IS NOT NULL THEN col3 > 0 ELSE TRUE END"
})
def evolving_table():
# Legacy data (V1 schema)
legacy_data = spark.read.table("legacy_source")
# New data (V2 schema)
new_data = spark.read.table("new_source")
# Combine both sources
return legacy_data.unionByName(new_data, allowMissingColumns=True)
SQL
CREATE OR REFRESH MATERIALIZED VIEW evolving_table(
-- Merging multiple constraints into one as expect_all is Python-specific API
CONSTRAINT valid_migrated_data EXPECT (
(col1 IS NOT NULL AND col2 IS NOT NULL) AND (CASE WHEN col3 IS NOT NULL THEN col3 > 0 ELSE TRUE END)
) ON VIOLATION FAIL UPDATE
) AS
SELECT * FROM new_source
UNION
SELECT *, NULL as col3 FROM legacy_source;
基于范围的验证模式
以下示例演示如何根据历史统计范围验证新数据点,帮助识别数据流中的离群值和异常:
Python
@dlt.view
def stats_validation_view():
# Calculate statistical bounds from historical data
bounds = spark.sql("""
SELECT
avg(amount) - 3 * stddev(amount) as lower_bound,
avg(amount) + 3 * stddev(amount) as upper_bound
FROM historical_stats
WHERE
date >= CURRENT_DATE() - INTERVAL 30 DAYS
""")
# Join with new data and apply bounds
return spark.read.table("new_data").crossJoin(bounds)
@dlt.table
@dlt.expect_or_drop(
"within_statistical_range",
"amount BETWEEN lower_bound AND upper_bound"
)
def validated_amounts():
return spark.read.table("stats_validation_view")
SQL
CREATE OR REFRESH MATERIALIZED VIEW stats_validation_view AS
WITH bounds AS (
SELECT
avg(amount) - 3 * stddev(amount) as lower_bound,
avg(amount) + 3 * stddev(amount) as upper_bound
FROM historical_stats
WHERE date >= CURRENT_DATE() - INTERVAL 30 DAYS
)
SELECT
new_data.*,
bounds.*
FROM new_data
CROSS JOIN bounds;
CREATE OR REFRESH MATERIALIZED VIEW validated_amounts (
CONSTRAINT within_statistical_range EXPECT (amount BETWEEN lower_bound AND upper_bound)
)
AS SELECT * FROM stats_validation_view;
隔离无效记录
此模式将预期与临时表和视图相结合,以跟踪管道更新期间的数据质量指标,并为下游作中的有效和无效记录启用单独的处理路径。
Python
import dlt
from pyspark.sql.functions import expr
rules = {
"valid_pickup_zip": "(pickup_zip IS NOT NULL)",
"valid_dropoff_zip": "(dropoff_zip IS NOT NULL)",
}
quarantine_rules = "NOT({0})".format(" AND ".join(rules.values()))
@dlt.view
def raw_trips_data():
return spark.readStream.table("samples.nyctaxi.trips")
@dlt.table(
temporary=True,
partition_cols=["is_quarantined"],
)
@dlt.expect_all(rules)
def trips_data_quarantine():
return (
spark.readStream.table("raw_trips_data").withColumn("is_quarantined", expr(quarantine_rules))
)
@dlt.view
def valid_trips_data():
return spark.read.table("trips_data_quarantine").filter("is_quarantined=false")
@dlt.view
def invalid_trips_data():
return spark.read.table("trips_data_quarantine").filter("is_quarantined=true")
SQL
CREATE TEMPORARY STREAMING LIVE VIEW raw_trips_data AS
SELECT * FROM STREAM(samples.nyctaxi.trips);
CREATE OR REFRESH TEMPORARY STREAMING TABLE trips_data_quarantine(
-- Option 1 - merge all expectations to have a single name in the pipeline event log
CONSTRAINT quarantined_row EXPECT (pickup_zip IS NOT NULL OR dropoff_zip IS NOT NULL),
-- Option 2 - Keep the expectations separate, resulting in multiple entries under different names
CONSTRAINT invalid_pickup_zip EXPECT (pickup_zip IS NOT NULL),
CONSTRAINT invalid_dropoff_zip EXPECT (dropoff_zip IS NOT NULL)
)
PARTITIONED BY (is_quarantined)
AS
SELECT
*,
NOT ((pickup_zip IS NOT NULL) and (dropoff_zip IS NOT NULL)) as is_quarantined
FROM STREAM(raw_trips_data);
CREATE TEMPORARY LIVE VIEW valid_trips_data AS
SELECT * FROM trips_data_quarantine WHERE is_quarantined=FALSE;
CREATE TEMPORARY LIVE VIEW invalid_trips_data AS
SELECT * FROM trips_data_quarantine WHERE is_quarantined=TRUE;