本文概述了状态存储中的架构演变,以及受支持的架构更改类型的示例。
状态存储中的架构演变是什么?
架构演变是指应用程序能够处理数据架构的更改。
Azure Databricks 支持在使用 transformWithState
的结构化流式处理应用程序中进行 RocksDB 状态存储的架构演变。
架构演变为开发和易于维护提供了灵活性。 使用架构演变来适应状态存储中的数据模型或数据类型,而无需丢失状态信息或需要完全重新处理历史数据。
要求
必须将状态存储编码格式设置为 Avro 才能使用架构演变。 若要为当前会话设置此设置,请运行以下命令:
spark.conf.set("spark.sql.streaming.stateStore.encodingFormat", "avro")
架构演变仅支持使用 transformWithState
或 transformWithStateInPandas
的有状态操作。 这些运算符和相关 API 和类具有以下要求:
- 在 Databricks Runtime 16.2 及更高版本中可用。
- 计算必须使用专用或无隔离访问模式。
- 必须使用 RocksDB 状态存储提供程序。 Databricks 建议在计算配置过程中启用 RocksDB。
transformWithStateInPandas
支持 Databricks Runtime 16.3 及更高版本中的标准访问模式。
若要为当前会话启用 RocksDB 状态存储提供程序,请运行以下命令:
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
状态存储中支持的架构演变模式
Databricks 支持针对有状态结构化流式处理操作的以下架构演变模式。
图案 | DESCRIPTION |
---|---|
类型拓宽 | 将数据类型从限制性更强更改为限制较少的类型。 |
添加字段 | 向现有状态存储变量的架构添加新字段。 |
删除字段 | 从架构或状态存储变量中删除现有字段。 |
重新排序字段 | 对变量中的字段重新排序。 |
添加状态变量 | 向应用程序添加新的状态变量。 |
删除状态变量 | 从应用程序中删除现有状态变量。 |
架构演变何时发生?
状态存储中的架构演变的结果是更新定义有状态应用程序的代码。 因此,以下语句适用:
- 由于查询的源数据中的架构更改,架构演变不会自动发生。
- 架构演变仅在部署应用程序的新版本时发生。 由于只有一个版本的流式处理查询可以同时运行,因此必须重启流式处理作业来改进状态变量的架构。
- 代码显式定义所有状态变量并设置所有状态变量的架构。
- 在 Scala 中,可以使用一个
Encoder
来指定每个变量的架构。 - 在 Python 中,将架构显式构造为 .
StructType
- 在 Scala 中,可以使用一个
不支持的架构演变模式
不支持以下架构演变模式:
字段重命名:不支持重命名字段,因为字段按名称匹配。 若要重命名字段,可以通过删除旧字段再添加新字段来实现。 此作不会导致错误,因为允许删除和添加字段,但原始字段中的值不会传递到新字段。
映射键重命名或类型更改:无法在映射状态变量中更改键的名称或类型。
类型缩小:不支持类型缩小操作(也称为向下转换)。 这些作可能会导致数据丢失。 以下是不支持的类型缩小操作的示例:
double
不能缩小到float
、long
或int
float
不能缩小到long
或int
long
无法缩小到int
状态存储区中的类型扩展
可以将基元数据类型扩大为更适应的类型。 支持以下类型扩展更改:
int
可以提升为long
、float
或double
long
可以提升为float
或double
float
可以提升为double
string
可以提升为bytes
bytes
可以提升为string
现有值作为新类型向上转换。 例如,12
将变为 12.00
。
使用 transformWithState
扩展类型的示例
Scala(编程语言)
// Initial run with Integer field
case class StateV1(value1: Integer)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV1](
"testState",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV1(value.toInt))
value
}
}
}
// Later run with Long field (type widening)
case class StateV2(value1: Long)
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV2](
"testState",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV2(value.toLong))
value
}
}
}
Python语言
class IntStateProcessor(StatefulProcessor):
def init(self, handle):
# Initial schema with Integer field
state_schema = StructType([
StructField("value1", IntegerType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
# Convert input value to integer and update state
value = pdf["value"].iloc[0]
self.state.update((int(value),))
# Read current state
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"stateValue": [current_state[0]]
})
class LongStateProcessor(StatefulProcessor):
def init(self, handle):
# Later schema with Long field (type widening)
state_schema = StructType([
StructField("value1", LongType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
# Convert input value to long and update state
value = pdf["value"].iloc[0]
# When reading state written with IntStateProcessor,
# it will be automatically converted to Long
self.state.update((int(value),))
# Read current state
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"stateValue": [current_state[0]]
})
向状态存储值中添加字段
可以将新字段添加到现有状态存储值的架构中。
阅读使用旧架构写入的数据时,Avro 编码器将返回已添加字段的数据,并采用原生格式进行编码为null
。
Python 始终将这些值解释为 None
。 Scala 具有不同的默认行为,具体取决于字段的类型。 Databricks 建议实现逻辑,以确保 Scala 不会对缺失数据进行插补值。 请参阅 添加到状态变量的字段的默认值。
使用 transformWithState
添加新字段的示例
Scala(编程语言)
// Initial run with single field
case class StateV1(value1: Integer)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV1](
"testState",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV1(value.toInt))
value
}
}
}
// Later run with additional field
case class StateV2(value1: Integer, value2: String)
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV2](
"testState",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
// When reading state written with StateV1(1),
// it will be automatically converted to StateV2(1, null)
val currentState = state.get()
// Now update with both fields populated
state.update(StateV2(value.toInt, s"metadata-${value}"))
value
}
}
}
Python语言
class StateV1Processor(StatefulProcessor):
def init(self, handle):
# Initial schema with a single field
state_schema = StructType([
StructField("value1", IntegerType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state.update((int(value),))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"stateValue": [current_state[0]]
})
class StateV2Processor(StatefulProcessor):
def init(self, handle):
# Later schema with additional fields
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
# Read current state
current_state = self.state.get()
# When reading state written with StateV1(1),
# it will be automatically converted to StateV2(1, None)
value1 = current_state[0]
value2 = current_state[1]
# Now update with both fields populated
self.state.update((int(value), f"metadata-{value}"))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
删除状态存储值的字段
可以从现有变量的架构中删除字段。 使用旧架构读取数据时,将忽略旧数据中存在的字段,但不在新架构中。
从状态变量中删除字段的示例
Scala(编程语言)
// Initial run with multiple fields
case class StateV1(value1: Integer, value2: String)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV1](
"testState",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV1(value.toInt, s"metadata-${value}"))
value
}
}
}
// Later run with field removed
case class StateV2(value1: Integer)
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV2](
"testState",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
// When reading state written with StateV1(1, "metadata-1"),
// it will be automatically converted to StateV2(1)
val currentState = state.get()
state.update(StateV2(value.toInt))
value
}
}
}
Python语言
class RemoveFieldsOriginalProcessor(StatefulProcessor):
def init(self, handle):
# Initial schema with multiple fields
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state.update((int(value), f"metadata-{value}"))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
class RemoveFieldsReducedProcessor(StatefulProcessor):
def init(self, handle):
# Later schema with field removed
state_schema = StructType([
StructField("value1", IntegerType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
# When reading state written with RemoveFieldsOriginalProcessor(1, "metadata-1"),
# it will be automatically converted to just (1,)
current_state = self.state.get()
value1 = current_state[0]
self.state.update((int(value),))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]]
})
对状态变量中的字段重新排序
可以在状态变量中对字段重新排序,包括添加或删除现有字段时。 状态变量中的字段按名称而不是位置进行匹配。
重新排序状态变量中的字段的示例
Scala(编程语言)
// Initial run with fields in original order
case class StateV1(value1: Integer, value2: String)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV1](
"testState",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV1(value.toInt, s"metadata-${value}"))
value
}
}
}
// Later run with reordered fields
case class StateV2(value2: String, value1: Integer)
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV2](
"testState",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
// When reading state written with StateV1(1, "metadata-1"),
// it will be automatically converted to StateV2("metadata-1", 1)
val currentState = state.get()
state.update(StateV2(s"new-metadata-${value}", value.toInt))
value
}
}
}
Python语言
class OrderedFieldsProcessor(StatefulProcessor):
def init(self, handle):
# Initial schema with fields in original order
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state.update((int(value), f"metadata-{value}"))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
class ReorderedFieldsProcessor(StatefulProcessor):
def init(self, handle):
# Later schema with reordered fields
state_schema = StructType([
StructField("value2", StringType(), True),
StructField("value1", IntegerType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
# When reading state written with OrderedFieldsProcessor(1, "metadata-1"),
# it will be automatically converted to ("metadata-1", 1)
current_state = self.state.get()
value2 = current_state[0]
value1 = current_state[1]
self.state.update((f"new-metadata-{value}", int(value)))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value2": [current_state[0]],
"value1": [current_state[1]]
})
将状态变量添加到有状态应用程序
还可以在查询运行之间添加状态变量。
注意:此模式不需要 Avro 编码器,并且受所有 transformWithState
应用程序支持。
将状态变量添加到有状态应用程序的示例
Scala(编程语言)
// Initial run with fields in original order
case class StateV1(value1: Integer, value2: String)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state1: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state1 = getHandle.getValueState[StateV1](
"testState1",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state1.update(StateV1(value.toInt, s"metadata-${value}"))
value
}
}
}
case class StateV2(value1: String, value2: Integer)
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state1: ValueState[StateV1] = _
@transient var state2: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state1 = getHandle.getValueState[StateV1](
"testState1",
Encoders.product[StateV1],
TTLConfig.NONE)
state2 = getHandle.getValueState[StateV2](
"testState2",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state1.update(StateV1(value.toInt, s"metadata-${value}"))
val currentState2 = state2.get()
state2.update(StateV2(s"new-metadata-${value}", value.toInt))
value
}
}
}
Python语言
class MultiStateV1Processor(StatefulProcessor):
def init(self, handle):
# Initial schema with a single state variable
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state1 = handle.getValueState("testState1", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state1.update((int(value), f"metadata-{value}"))
current_state = self.state1.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
class MultiStateV2Processor(StatefulProcessor):
def init(self, handle):
# Add a second state variable
state1_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
state2_schema = StructType([
StructField("value1", StringType(), True),
StructField("value2", IntegerType(), True)
])
self.state1 = handle.getValueState("testState1", state1_schema)
self.state2 = handle.getValueState("testState2", state2_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state1.update((int(value), f"metadata-{value}"))
# Access and update the new state variable
current_state2 = self.state2.get() # Will be None on first run
self.state2.update((f"new-metadata-{value}", int(value)))
current_state1 = self.state1.get()
current_state2 = self.state2.get()
yield pd.DataFrame({
"id": [key[0]],
"state1_value1": [current_state1[0]],
"state1_value2": [current_state1[1]],
"state2_value1": [current_state2[0]],
"state2_value2": [current_state2[1]]
})
从有状态应用程序中删除状态变量
除了删除字段之外,还可以在查询运行之间删除状态变量。
注意:此模式不需要 Avro 编码器,并且受所有 transformWithState
应用程序支持。
将状态变量从有状态应用程序中移除的示例
Scala(编程语言)
case class StateV1(value1: Integer, value2: String)
case class StateV2(value1: Integer, value2: String)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state1: ValueState[StateV1] = _
@transient var state2: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state1 = getHandle.getValueState[StateV1](
"testState1",
Encoders.product[StateV1],
TTLConfig.NONE)
state2 = getHandle.getValueState[StateV2](
"testState2",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state1.update(StateV1(value.toInt, s"metadata-${value}"))
val currentState2 = state2.get()
state2.update(StateV2(value.toInt, s"new-metadata-${value}"))
value
}
}
}
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state1: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state1 = getHandle.getValueState[StateV1](
"testState1",
Encoders.product[StateV1],
TTLConfig.NONE)
// delete old state variable that we no longer need
getHandle.deleteIfExists("testState2")
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state1.update(StateV1(value.toInt, s"metadata-${value}"))
value
}
}
}
Python语言
class MultiStateV2Processor(StatefulProcessor):
def init(self, handle):
# Add a second state variable
state1_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
state2_schema = StructType([
StructField("value1", StringType(), True),
StructField("value2", IntegerType(), True)
])
self.state1 = handle.getValueState("testState1", state1_schema)
self.state2 = handle.getValueState("testState2", state2_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state1.update((int(value), f"metadata-{value}"))
# Access and update the new state variable
current_state2 = self.state2.get() # Will be None on first run
self.state2.update((f"new-metadata-{value}", int(value)))
current_state1 = self.state1.get()
current_state2 = self.state2.get()
yield pd.DataFrame({
"id": [key[0]],
"state1_value1": [current_state1[0]],
"state1_value2": [current_state1[1]],
"state2_value1": [current_state2[0]],
"state2_value2": [current_state2[1]]
})
class RemoveStateVarProcessor(StatefulProcessor):
def init(self, handle):
# Only use one state variable and delete the other
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state1 = handle.getValueState("testState1", state_schema)
# Delete old state variable that we no longer need
handle.deleteIfExists("testState2")
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state1.update((int(value), f"metadata-{value}"))
current_state = self.state1.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
添加到状态变量的字段的默认值
向现有状态变量添加新字段时,使用旧架构写入的状态变量具有以下行为:
- Avro 编码器为已添加字段返回
null
值。 - Python 将这些值转换为所有数据类型的
None
。 - Scala 默认行为因数据类型而异:
- 引用类型返回
null
。 - 基元类型返回一个默认值,该值因基元类型而异。 示例包括
0
类型的int
或false
类型的bool
。
- 引用类型返回
没有内置功能或元数据可以将字段标记为通过架构演化添加的。 必须实现逻辑来处理为先前架构中不存在的字段返回的 null 值。
对于 Scala,可以使用 Option[<Type>]
来避免插补默认值,这会将缺失值返回为 None
,而不是使用类型默认值。
必须实现逻辑,以正确处理在架构演变过程中返回的 None
类型值的情况。
向状态变量添加字段的默认值示例
Scala(编程语言)
// Example demonstrating how null defaults work in schema evolution
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.Encoders
// Initial schema that will be evolved
case class StateV1(value1: Integer, value2: String)
class ProcessorV1 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV1] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV1](
"testState",
Encoders.product[StateV1],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
state.update(StateV1(value.toInt, s"metadata-${value}"))
value
}
}
}
// Evolution: Adding a new field with null/default values
case class StateV2(value1: Integer, value2: String, value3: Long, value4: Option[Long])
class ProcessorV2 extends StatefulProcessor[String, String, String] {
@transient var state: ValueState[StateV2] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
state = getHandle.getValueState[StateV2](
"testState",
Encoders.product[StateV2],
TTLConfig.NONE)
}
override def handleInputRows(
key: String,
inputRows: Iterator[String],
timerValues: TimerValues): Iterator[String] = {
rows.map { value =>
// Reading from state
val currentState = state.get()
// Showing how null defaults work for different types
// When reading state written with StateV1(1, "metadata-1"),
// it will be automatically converted to StateV2(1, "metadata-1", 0L, None)
println(s"Current state: $currentState")
// For primitive types like Long, the UnsafeRow default for null is 0
val longValue = if (currentState.value3 == 0L) {
println("The value3 field is the default value (0)")
100L // Set a real value now
} else {
currentState.value3
}
// Now update with all fields populated
state.update(StateV2(value.toInt, s"metadata-${value}", longValue))
value
}
}
}
Python语言
class NullDefaultsProcessor(StatefulProcessor):
def init(self, handle):
# Initial schema
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
self.state.update((int(value), f"metadata-{value}"))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]]
})
class ExpandedNullDefaultsProcessor(StatefulProcessor):
def init(self, handle):
# Evolution: Adding new fields with null/default values
state_schema = StructType([
StructField("value1", IntegerType(), True),
StructField("value2", StringType(), True),
StructField("value3", LongType(), True),
StructField("value4", IntegerType(), True),
StructField("value5", BooleanType(), True)
])
self.state = handle.getValueState("testState", state_schema)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
for pdf in rows:
value = pdf["value"].iloc[0]
# Reading from state
current_state = self.state.get()
# Showing how null defaults work in Python
# When reading state written with NullDefaultsProcessor state = (1, "metadata-1"),
# it will be automatically converted to (1, "metadata-1", None, None, None)
# In Python, both primitive and reference types will be None
value1 = current_state[0]
value2 = current_state[1]
value3 = current_state[2] # Will be None when evolved from older schema
value4 = current_state[3] # Will be None when evolved from older schema
value5 = current_state[4] # Will be None when evolved from older schema
# Check if value3 is None
if value3 is None:
print("The value3 field is None (default value for evolution)")
value3 = 100 # Set a real value now
# Now update with all fields populated
self.state.update((
value1,
value2,
value3,
value4 if value4 is not None else 42,
value5 if value5 is not None else True
))
current_state = self.state.get()
yield pd.DataFrame({
"id": [key[0]],
"value1": [current_state[0]],
"value2": [current_state[1]],
"value3": [current_state[2]],
"value4": [current_state[3]],
"value5": [current_state[4]]
})
局限性
下表描述了架构演变更改的默认限制:
DESCRIPTION | 默认限制 | 要替代的 Spark 配置 |
---|---|---|
状态变量的架构演变。 在查询重启中应用多个架构更改会算作单个架构演变。 | 16 | spark.sql.streaming.stateStore.valueStateSchemaEvolutionThreshold |
流式处理查询的架构演变。 在查询重启中应用多个架构更改会算作单个架构演变。 | 128 | spark.sql.streaming.stateStore.maxNumStateSchemaFiles |
对状态变量的架构演变进行故障排除时,请仔细考虑以下详细信息:
- 架构演变不支持某些模式。 请参阅 不支持的架构演变模式。
- 架构演变具有
transformWithState
的所有要求,并且需要 Avro 编码格式。 请参阅 要求。 - 必须重启流式处理查询才能部署导致架构演变的代码更改。 请参阅架构演变何时发生?