该 $stddevpop 运算符计算指定值的标准偏差。 运算符只能计算数值的标准偏差。
Syntax
{
$stddevpop: {fieldName}
}
参数
| 参数 | Description |
|---|---|
fieldName |
其值用于计算标准偏差的字段 |
例子
请考虑商店集合中的这个示例文档。
{
"_id": "0fcc0bf0-ed18-4ab8-b558-9848e18058f4",
"name": "First Up Consultants | Beverage Shop - Satterfieldmouth",
"location": {
"lat": -89.2384,
"lon": -46.4012
},
"staff": {
"totalStaff": {
"fullTime": 8,
"partTime": 20
}
},
"sales": {
"totalSales": 75670,
"salesByCategory": [
{
"categoryName": "Wine Accessories",
"totalSales": 34440
},
{
"categoryName": "Bitters",
"totalSales": 39496
},
{
"categoryName": "Rum",
"totalSales": 1734
}
]
},
"promotionEvents": [
{
"eventName": "Unbeatable Bargain Bash",
"promotionalDates": {
"startDate": {
"Year": 2024,
"Month": 6,
"Day": 23
},
"endDate": {
"Year": 2024,
"Month": 7,
"Day": 2
}
},
"discounts": [
{
"categoryName": "Whiskey",
"discountPercentage": 7
},
{
"categoryName": "Bitters",
"discountPercentage": 15
},
{
"categoryName": "Brandy",
"discountPercentage": 8
},
{
"categoryName": "Sports Drinks",
"discountPercentage": 22
},
{
"categoryName": "Vodka",
"discountPercentage": 19
}
]
},
{
"eventName": "Steal of a Deal Days",
"promotionalDates": {
"startDate": {
"Year": 2024,
"Month": 9,
"Day": 21
},
"endDate": {
"Year": 2024,
"Month": 9,
"Day": 29
}
},
"discounts": [
{
"categoryName": "Organic Wine",
"discountPercentage": 19
},
{
"categoryName": "White Wine",
"discountPercentage": 20
},
{
"categoryName": "Sparkling Wine",
"discountPercentage": 19
},
{
"categoryName": "Whiskey",
"discountPercentage": 17
},
{
"categoryName": "Vodka",
"discountPercentage": 23
}
]
}
]
}
示例 1 - 计算总销售额的标准偏差
若要计算属于“Fourth Coffee”的商店的所有销售类别的总销售额的标准偏差,请先在公司字段中进行筛选,然后使用 stddevpop 计算所有生成的商店的总销售额,并返回聚合结果。
db.stores.aggregate([{
$match: {
company: "Fourth Coffee"
}
}, {
$group: {
_id: "$company",
stdDev: {
$stdDevPop: "$sales.totalSales"
}
}
}])[{
_id: 'Fourth Coffee',
stdDev: 0
}]
此查询返回以下结果:
[
{
"_id": "Fourth Coffee",
"stdDev": 39133.27057120701
}
]
示例 2 - 计算具有单个值的字段的标准偏差
若要计算只有一个非重复值的字段的标准偏差,标准偏差为 0。 此查询对对应于“第四公司”的文档进行分组。 每个商店都包含一个文档,并且总销售额只有一个非重复值。
db.stores.aggregate([{
$match: {
company: "Fourth Coffee"
}
}, {
$group: {
_id: "$name",
stdDev: {
$stdDevPop: "$sales.totalSales"
}
}
}])
此查询返回以下结果:
[
{
"_id": "Fourth Coffee | Outdoor Equipment Collection - Kochview",
"stdDev": 0
},
{
"_id": "Fourth Coffee | Grocery Hub - Brakusborough",
"stdDev": 0
},
{
"_id": "Fourth Coffee | Pet Supply Nook - Lake Armanimouth",
"stdDev": 0
},
{
"_id": "Fourth Coffee | Beauty Product Nook - Emmytown",
"stdDev": 0
},
{
"_id": "Fourth Coffee | Bed and Bath Closet - Legroston",
"stdDev": 0
},
{
"_id": "Fourth Coffee | Automotive Part Collection - Cassinport",
"stdDev": 0
}
]
示例 3 - 使用窗口运算符时计算字段的标准偏差
此查询计算属于“第一向上顾问”公司的商店总销售额的标准偏差,从结果集中的第一个到当前文档。
db.stores.aggregate([{
$match: {
company: {
$in: ["First Up Consultants"]
},
$and: [{
lastUpdated: {
$gt: ISODate("2024-09-01T03:06:24.180Z")
}
}, {
lastUpdated: {
"$lt": ISODate("2025-09-30T03:55:17.557Z")
}
}]
}
}, {
$setWindowFields: {
partitionBy: "$company",
sortBy: {
lastUpdated: 1
},
output: {
stdDevPopTotalSales: {
$stdDevPop: "$sales.totalSales",
window: {
documents: ["unbounded", "current"]
}
}
}
}
}, {
$project: {
company: 1,
name: 1,
"sales.totalSales": 1,
lastUpdated: 1,
stdDevPopTotalSales: 1
}
}])
此查询返回以下结果:
[
{
"_id": "2cf3f885-9962-4b67-a172-aa9039e9ae2f",
"sales": {},
"company": "First Up Consultants",
"lastUpdated": {
"$date": "2025-06-11T10:48:01.291Z"
},
"name": "First Up Consultants | Bed and Bath Center - South Amir",
"stdDevPopTotalSales": null
}
]
相关内容
- 查看用于 从 MongoDB 迁移到 Azure DocumentDB 的选项。
- 详细了解 与 MongoDB 的功能兼容性。