将计算管理升级到 v2
v2 开发平台的计算管理功能保持不变。
本文比较了 SDK v1 和 SDK v2 中的方案。
创建计算实例
SDK v1
import datetime import time from azureml.core.compute import ComputeTarget, ComputeInstance from azureml.core.compute_target import ComputeTargetException # Compute Instances need to have a unique name across the region. # Here, we create a unique name with current datetime ci_basic_name = "basic-ci" + datetime.datetime.now().strftime("%Y%m%d%H%M") compute_config = ComputeInstance.provisioning_configuration( vm_size='STANDARD_DS3_V2' ) instance = ComputeInstance.create(ws, ci_basic_name , compute_config) instance.wait_for_completion(show_output=True)
SDK v2
# Compute Instances need to have a unique name across the region. # Here, we create a unique name with current datetime from azure.ai.ml.entities import ComputeInstance, AmlCompute import datetime ci_basic_name = "basic-ci" + datetime.datetime.now().strftime("%Y%m%d%H%M") ci_basic = ComputeInstance(name=ci_basic_name, size="STANDARD_DS3_v2", idle_time_before_shutdown_minutes="30") ml_client.begin_create_or_update(ci_basic)
创建计算群集
SDK v1
from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException # Choose a name for your CPU cluster cpu_cluster_name = "cpucluster" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS3_V2', max_nodes=4) cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config) cpu_cluster.wait_for_completion(show_output=True)
SDK v2
from azure.ai.ml.entities import AmlCompute cpu_cluster_name = "cpucluster" cluster_basic = AmlCompute( name=cpu_cluster_name, type="amlcompute", size="STANDARD_DS3_v2", max_instances=4 ) ml_client.begin_create_or_update(cluster_basic)
SDK v1 和 SDK v2 中关键功能的映射
SDK v1 中的功能 | SDK v2 中的粗略映射 |
---|---|
SDK v1 中的方法/API(使用指向参考文档的链接) | SDK v2 中的方法/API(使用指向参考文档的链接) |