Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
APPLIES TO:
MongoDB vCore
Indexes are structures that enhance data retrieval speed by enabling quick access to specific fields within a collection. This article explains how to perform indexing at various nesting levels and reviews how to effectively review utilization of these indexes.
We would work on example scenarios with context to the defined sample json.
{
"_id": "e79b564e-48b1-4f75-990f-e62de2449239",
"car_id":"AZ-9874532",
"car_info": {
"make": "Mustang",
"model": "GT Fastback",
"year": 2024,
"registration": {
"license_plate": "LJX386",
"state": "WV",
"registration_datetime": {
"$date": "2024-01-10T01:16:44.000Z"
},
"expiration_datetime": {
"$date": "2034-01-10T01:16:44.000Z"
}
}
},
"rental_history": [
{
"rental_id": "RT63857499825952",
"customer_id": "CX8716",
"start_date": {
"$date": "2024-02-29T01:16:44.000Z"
},
"end_date": {
"$date": "2024-03-04T16:54:44.000Z"
},
"pickup_location": { "type": "Point", "coordinates": [ -73.97, 40.77 ]
},
"drop_location": { "type": "Point", "coordinates": [ -73.96, 40.78 ]
},
"total_price": 232.56944444444443,
"daily_rent": 50,
"complains": [
{
"complain_id": "CMP638574998259520",
"issue": "Strange odor inside the car.",
"reported_datetime": {
"$date": "2024-03-03T20:11:44.000Z"
},
"reported_medium": "Website",
"resolutions": [
{
"resolution_datetime": {
"$date": "2024-03-03T20:20:44.000Z"
},
"solution": "Inspect for any leftover food, spills, or trash that might be causing the odor. Contact the rental agency.",
"resolved": true
}
]
}
],
"accidents": [
{
"accident_id": "ACC376184",
"date": {
"$date": "2024-03-03T01:47:44.000Z"
},
"description": "Collisions with Soft Barriers: Accidents involving hitting bushes, shrubs, or other soft barriers.",
"repair_cost": 147
}
]
},
{
"rental_id": "RT63857499825954",
"customer_id": "CX1412",
"start_date": {
"$date": "2033-11-18T01:16:44.000Z"
},
"end_date": {
"$date": "2033-11-25T21:11:44.000Z"
},
"pickup_location": { "type": "Point", "coordinates": [ 40, 5 ]
},
"drop_location": { "type": "Point", "coordinates": [ 41, 11 ]
},
"total_price": 305.3645833333333,
"daily_rent": 39,
"complains": [
{
"complain_id": "CMP638574998259540",
"issue": "Unresponsive infotainment system.",
"reported_datetime": {
"$date": "2033-11-19T17:55:44.000Z"
},
"reported_medium": "Agency",
"resolutions": []
}
],
"accidents": null
}
],
"junk": null
}
Azure Cosmos DB for MongoDB vCore allows indexes on root properties. The example allows searching sampleColl
by car_id
.
CarData> db.sampleColl.createIndex({"car_id":1})
Execution plan allows reviewing the utilization of index created on car_id
field with explain
.
CarData> db.sampleColl.find({"car_id":"ZA-XWB804"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_id' : 'ZA-XWB804' } }})",
explainCommandPlanningTimeMillis: 0.156,
explainCommandExecTimeMillis: 37.956,
dataSize: '32 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 8700,
inputStage: {
stage: 'IXSCAN',
indexName: 'car_id_1',
isBitmap: true,
indexFilterSet: [ { '$eq': { car_id: 'ZA-XWB804' } } ],
estimatedTotalKeysExamined: 174
}
}
},
ok: 1
}
Azure Cosmos DB for MongoDB vCore allows indexing embedded document properties. The example creates an index on field registration_datetime
within a nested document registration
.
CarData> db.sampleColl.createIndex({"car_info.registration.registration_datetime":1})
Review execution plan with explain
provides insight into index scan.
CarData> db.sampleColl.find({"car_info.registration.registration_datetime":
{ $gte : new ISODate("2024-05-01")
,$lt: ISODate("2024-05-07")
}
}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.registration.registration_datetime' : { '$gte' : ISODate('2024-05-01T00:00:00Z'), '$lt' : ISODate('2024-05-07T00:00:00Z') } } }})",
explainCommandPlanningTimeMillis: 0.095,
explainCommandExecTimeMillis: 42.703,
dataSize: '4087 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 4350,
inputStage: {
stage: 'IXSCAN',
indexName: 'car_info.registration.registration_datetime_1',
isBitmap: true,
indexFilterSet: [
{
'$range': {
'car_info.registration.registration_datetime': {
min: ISODate("2024-05-01T00:00:00.000Z"),
max: ISODate("2024-05-07T00:00:00.000Z"),
minInclusive: true,
maxInclusive: false
}
}
}
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
Azure Cosmos DB for MongoDB vCore allows indexing the root property defined as an array. Let us consider following json sample.
{
"_id": ObjectId("58f56170ee9d4bd5e610d644"),
"id": 1,
"num": 001,
"name": "Bulbasaur",
"img": "http://www.serebii.net/pokemongo/pokemon/001.png",
"type": [ 'Grass', 'Poison' ],
"height": '0.71 m',
"weight": '6.9 kg',
"avg_spawns": 69,
"spawn_time": "20:00",
"multipliers": [ 1.58 ],
"weaknesses": [ "Fire", "Ice", "Flying", "Psychic"],
"next_evolution": [ { "num": "002", "name": "Ivysaur" }, { "num": "003", "name": "Venusaur" }]
}
In our example, we create an index on weaknesses
array field and we're reviewing for the existence of all three values Ground
, Water
& Fire
in the array.
Cosmicworks> db.Pokemon.createIndex({'weaknesses':1})
Cosmicworks> db.Pokemon.find({"weaknesses":
{$all:["Ground","Water","Fire"]}
}
).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'Pokemon', 'filter' : { 'weaknesses' : { '$all' : ['Ground', 'Water', 'Fire'] } } }})",
explainCommandPlanningTimeMillis: 10.161,
explainCommandExecTimeMillis: 21.64,
dataSize: '906 bytes',
queryPlanner: {
namespace: 'Cosmicworks.Pokemon',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 50,
inputStage: {
stage: 'IXSCAN',
indexName: 'weaknesses_1',
isBitmap: true,
indexFilterSet: [
{ '$all': { weaknesses: [ 'Ground', 'Water', 'Fire' ] } }
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
Note
For MongoServerError: Index key is too large.
Please create a support request for enabling background indexing, followed by enableLargeIndexKeys
db.runCommand({ createIndexes: "collectionName", indexes: [{ {"index_spec"}], enableLargeIndexKeys: true });
Azure Cosmos DB for MongoDB vCore allows indexing nested arrays. The example creates an index on resolutions
field existing within complains
array.
CarData> db.sampleColl.createIndex({"rental_history.complains.resolutions":1})
We review the plan with explain
to identify for all the rentals, without a resolution provided to the customer.
CarData> db.sampleColl.find({"rental_history.complains.resolutions":{ $exists: false, $ne: []}}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'rental_history.complains.resolutions' : { '$exists' : false, '$ne' : [] } } }})",
explainCommandPlanningTimeMillis: 0.12,
explainCommandExecTimeMillis: 48.721000000000004,
dataSize: '1747 kB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 1933,
inputStage: {
stage: 'IXSCAN',
indexName: 'rental_history.complains.resolutions_1',
isBitmap: true,
indexFilterSet: [
{
'$exists': { 'rental_history.complains.resolutions': false }
},
{ '$ne': { 'rental_history.complains.resolutions': [] } }
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
Azure Cosmos DB for MongoDB vCore allows indexing fields within an array. The example creates an index on date
field within accidents
array.
CarData> db.sampleColl.createIndex({"rental_history.accidents.date":1})
The example query evaluates for the accidents between a time range, shows index created on date
property being utilized.
CarData> db.sampleColl.find({"rental_history.accidents.date":
{ $gte : ISODate("2024-05-01")
, $lt : ISODate("2024-05-07")
}
}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'rental_history.accidents.date' : { '$gte' : ISODate('2024-05-01T00:00:00Z'), '$lt' : ISODate('2024-05-07T00:00:00Z') } } }})",
explainCommandPlanningTimeMillis: 19.816,
explainCommandExecTimeMillis: 48.359,
dataSize: '12 MB',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'FETCH',
estimatedTotalKeysExamined: 4350,
inputStage: {
stage: 'IXSCAN',
indexName: 'rental_history.accidents.date_1',
isBitmap: true,
indexFilterSet: [
{
'$range': {
'rental_history.accidents.date': {
min: ISODate("2024-05-01T00:00:00.000Z"),
max: ISODate("2024-05-07T00:00:00.000Z"),
minInclusive: true,
maxInclusive: false
}
}
}
],
estimatedTotalKeysExamined: 2
}
}
},
ok: 1
}
Note
We are currently enhancing support for nested arrays. In certain edge cases, specific indexing operations may lead to errors.
Azure Cosmos DB for MongoDB vCore supports Wildcard indexes. The example allows us to exclude indexing all nested fields within document car_info
.
// Excludes all the nested sub-document property
CarData> db.sampleColl.createIndex( {"$**":1}
,{"wildcardProjection":
{ "car_info.make":0
,"car_info.model":0
,"car_info.registration":0
,"car_info.year":0
,"rental_history":0
}
}
)
Execution plan does show no support for queries performed on model
field, which was excluded while creating the Wildcard index.
CarData> db.sampleColl.find({"car_info.model":"GT Fastback"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.model' : 'GT Fastback' } }})",
explainCommandPlanningTimeMillis: 10.879,
explainCommandExecTimeMillis: 374.25100000000003,
dataSize: '0 bytes',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'car_info.model': 'GT Fastback' } } ],
estimatedTotalKeysExamined: 8700
}
},
ok: 1
}
Azure Cosmos DB for MongoDB vCore supports Wildcard indexes. The example allows us to exclude nested objects from the document.
// Wildcard index excluding nested object
[mongos] CarData> db.sampleColl.createIndex( {"$**":1},
{"wildcardProjection":
{ "car_info":0
,"rental_history":0
}
}
)
Execution plan shows no support for queries performed on nested field make
within car_info
document.
CarData> db.sampleColl.find({"car_info.make":"Mustang"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'sampleColl', 'filter' : { 'car_info.make' : 'Mustang' } }})",
explainCommandPlanningTimeMillis: 21.271,
explainCommandExecTimeMillis: 337.475,
dataSize: '0 bytes',
queryPlanner: {
namespace: 'CarData.sampleColl',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'car_info.make': 'Mustang' } } ],
estimatedTotalKeysExamined: 8700
}
},
ok: 1
}
The wildcard index example allows excluding fields from nested array. We use pokemon
collection with json format highlighted.
{
{
"_id": ObjectId("58f56170ee9d4bd5e610d644"),
"id": 1,
"num": 001,
"name": "Bulbasaur",
"img": "http://www.serebii.net/pokemongo/pokemon/001.png",
"type": [ 'Grass', 'Poison' ],
"height": '0.71 m',
"weight": '6.9 kg',
"avg_spawns": 69,
"spawn_time": "20:00",
"multipliers": [ 1.58 ],
"weaknesses": [ "Fire", "Ice", "Flying", "Psychic"],
"next_evolution": [ { "num": "002", "name": "Ivysaur" }, { "num": "003", "name": "Venusaur" }]
}
}
We're creating index on all the fields within the json excluding a num
and name
fields from within an array.
Cosmicworks> db.Pokemon.createIndex( {"$**":1},
{"wildcardProjection":
{ "id":0
,"name":0
,"multipliers":0
,"next_evolution.num":0
,"next_evolution.name":0
}
}
)
Explain plan shows no index utilization while querying on name
field within next_evolution
array.
Cosmicworks> db.Pokemon.find({"next_evolution.name":"Venusaur"}).explain()
{
explainVersion: 2,
command: "db.runCommand({explain: { 'find' : 'Pokemon', 'filter' : { 'next_evolution.name' : 'Venusaur' } }})",
explainCommandPlanningTimeMillis: 0.799,
explainCommandExecTimeMillis: 0.869,
dataSize: '1090 bytes',
queryPlanner: {
namespace: 'Cosmicworks.Pokemon',
winningPlan: {
stage: 'COLLSCAN',
runtimeFilterSet: [ { '$eq': { 'next_evolution.name': 'Venusaur' } } ],
estimatedTotalKeysExamined: 76
}
},
ok: 1
}
- Learn here about Wildcard indexing.
- Learn about indexing Best practices for most efficient outcomes.
- Learn about background indexing
- Learn here to work with Text indexing.