Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
The $map
operator is used to apply an expression to each element in an array and return an array with the applied results. This operator is useful for transforming arrays within documents, such as modifying each element or extracting specific fields.
Syntax
{
$map: {
input: <array>,
as: <variable>,
in: <expression>
}
}
Parameters
Parameter | Description |
---|---|
input |
The array processed by the expression. |
as |
The variable name for each element in the array. |
in |
The expression to apply to each element. |
Examples
Consider this sample document from the stores collection.
{
"_id": "988d2dd1-2faa-4072-b420-b91b95cbfd60",
"name": "Lakeshore Retail",
"location": {
"lat": -51.3041,
"lon": -166.0838
},
"staff": {
"totalStaff": {
"fullTime": 5,
"partTime": 20
}
},
"sales": {
"totalSales": 266491,
"salesByCategory": [
{
"categoryName": "Towel Racks",
"totalSales": 13237
},
{
"categoryName": "Washcloths",
"totalSales": 44315
},
{
"categoryName": "Face Towels",
"totalSales": 42095
},
{
"categoryName": "Toothbrush Holders",
"totalSales": 47912
},
{
"categoryName": "Hybrid Mattresses",
"totalSales": 48660
},
{
"categoryName": "Napkins",
"totalSales": 31439
},
{
"categoryName": "Pillow Cases",
"totalSales": 38833
}
]
},
"tag": [
"#ShopLocal",
"#FashionStore",
"#SeasonalSale",
"#FreeShipping",
"#MembershipDeals"
]
}
Example 1: Extracting category names
This query filters the stores
collection for _id
, then projects a new field categoryNames
where each element in the salesByCategory array has its totalSales increased by 500 using the $map operator.
db.stores.aggregate([{
$match: {
_id: "988d2dd1-2faa-4072-b420-b91b95cbfd60"
}
},
{
$project: {
categoryNames: {
$map: {
input: "$sales.salesByCategory.totalSales",
as: "category",
in: {
$add: ["$$category", 500]
}
}
}
}
}
])
This query returns the following result.
[
{
"_id": "988d2dd1-2faa-4072-b420-b91b95cbfd60",
"categoryNames": [
13737,
44815,
42595,
48412,
49160,
31939,
39333
]
}
]
Related content
- Review options for migrating from MongoDB to Azure Cosmos DB for MongoDB (vCore).
- Read more about feature compatibility with MongoDB.