Databricks Runtime 6.6 ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in May 2020.
Databricks Runtime 6.6 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 6.6 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
New features
Databricks Runtime 6.6 ML is built on top of Databricks Runtime 6.6. For information on what's new in Databricks Runtime 6.6, see the Databricks Runtime 6.6 (EoS) release notes.
Improvements
Upgraded machine learning libraries
- mlflow: 1.7.0 to 1.8.0
Deprecations
- Table access control (table ACLs) is deprecated in Databricks Runtime for Machine Learning and will be removed in the upcoming major release of Databricks Runtime for ML. We recommend that you use Databricks Runtime if you need table access control.
System environment
The system environment in Databricks Runtime 6.6 ML differs from Databricks Runtime 6.6 as follows:
- DBUtils: Does not contain Library utility (dbutils.library) (legacy).
- For GPU clusters, the following NVIDIA GPU libraries:
- CUDA 10.0
- cuDNN 7.6.4
- NCCL 2.4.8
Libraries
The following sections list the libraries included in Databricks Runtime 6.6 ML that differ from those included in Databricks Runtime 6.6.
In this section:
Top-tier libraries
Databricks Runtime 6.6 ML includes the following top-tier libraries:
- GraphFrames
- Horovod and HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python libraries
Databricks Runtime 6.6 ML uses Conda for Python package management and includes many popular ML packages. The following section describes the Conda environment for Databricks Runtime 6.6 ML.
Python on CPU clusters
name: databricks-ml
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.9.0=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.2.0=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_1
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_1
- py-xgboost-cpu=0.90=py37_1
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.4.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
- tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-mkl=1.15.0+db2=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.5.0=py37_cpu
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.10.0
- deprecated==1.2.7
- docker==4.2.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.19.0
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.8.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml
Python on GPU clusters
name: databricks-ml-gpu
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.9.0=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.2.0=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37h688424c_0
- py-xgboost-gpu=0.90=py37h28bbb66_0
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.4.0=py3.7_cuda10.0.130_cudnn7.6.3_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
- tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-gpu=1.15.0+db2=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.5.0=py37_cu100
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.10.0
- deprecated==1.2.7
- docker==4.2.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.19.0
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.8.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu
Spark packages containing Python modules
Spark Package | Python Module | Version |
---|---|---|
graphframes | graphframes | 0.7.0-db1-spark2.4 |
spark-deep-learning | sparkdl | 1.6.0-db1-spark2.4 |
tensorframes | tensorframes | 0.8.2-s_2.11 |
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 6.6.
Java and Scala libraries (Scala 2.11 cluster)
In addition to Java and Scala libraries in Databricks Runtime 6.6, Databricks Runtime 6.6 ML contains the following JARs:
Group ID | Artifact ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.11 | 2.3.11 |
ml.combust.mleap | mleap-databricks-runtime_2.11 | 0.15.0 |
ml.dmlc | xgboost4j | 0.90 |
ml.dmlc | xgboost4j-spark | 0.90 |
org.graphframes | graphframes_2.11 | 0.7.0-db1-spark2.4 |
org.mlflow | mlflow-client | 1.8.0 |
org.tensorflow | libtensorflow | 1.15.0 |
org.tensorflow | libtensorflow_jni | 1.15.0 |
org.tensorflow | spark-tensorflow-connector_2.11 | 1.15.0 |
org.tensorflow | tensorflow | 1.15.0 |