Databricks Runtime 8.3 for ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in June 2021.
Databricks Runtime 8.3 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 8.3 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
New features and improvements
Databricks Runtime 8.3 ML is built on top of Databricks Runtime 8.3. For information on what's new in Databricks Runtime 8.3, including Apache Spark MLlib and SparkR, see the Databricks Runtime 8.3 (EoS) release notes.
Databricks Runtime 8.3 ML also includes the following new packages:
Major changes to Databricks Runtime ML Python environment
See Databricks Runtime 8.3 (EoS) for the major changes to the Databricks Runtime Python environment. For a full list of installed Python packages and their versions, see Python libraries.
Python packages upgraded
- koalas 1.7.0 -> 1.8.0
- mlflow 1.15.0 -> 1.17.0
- pandas 1.1.3 -> 1.1.5
- petastorm 0.9.8 -> 0.10.0
- xgboost 1.3.3 -> 1.4.1
Python packages added
- holidays: 0.10.5.2
Use Shiny inside R notebooks
You can now develop, host, and share Shiny applications directly from an Azure Databricks R notebook, similarly to hosted RStudio. For details, see Shiny on Azure Databricks.
Deprecations
Conda environments, along with the %conda
command,
are now deprecated in favor of pip
and virtualenv
and will be removed in an upcoming major release.
Additionally, custom images using Conda-based environments with
Databricks Container Services
will still be supported, but will not have notebook-scoped library capabilities.
Databricks recommends using virtualenv
-based environments with Databricks Container Services
and %pip
for all notebook-scoped libraries.
System environment
The system environment in Databricks Runtime 8.3 ML differs from Databricks Runtime 8.3 as follows:
- DBUtils: Databricks Runtime ML does not include Library utility (dbutils.library) (legacy).
Use
%pip
and%conda
commands instead. See Notebook-scoped Python libraries. - For GPU clusters, Databricks Runtime ML includes the following NVIDIA GPU libraries:
- CUDA 11.0
- cuDNN 8.0.4.30
- NCCL 2.7.8
- TensorRT 7.1.3
Libraries
The following sections list the libraries included in Databricks Runtime 8.3 ML that differ from those included in Databricks Runtime 8.3.
In this section:
Top-tier libraries
Databricks Runtime 8.3 ML includes the following top-tier libraries:
- GraphFrames
- Horovod and HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python libraries
Databricks Runtime 8.3 ML uses Conda for Python package management and includes many popular ML packages.
In addition to the packages specified in the Conda environments in the following sections, Databricks Runtime 8.3 ML also includes the following packages:
- hyperopt 0.2.5.db1
- sparkdl 2.1.0.db4
- feature_store 0.3.1
- automl 1.0.0
Python libraries on CPU clusters
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.11.0=pyhd3eb1b0_1
- aiohttp=3.7.4=py38h27cfd23_1
- asn1crypto=1.4.0=py_0
- astor=0.8.1=py38h06a4308_0
- async-timeout=3.0.1=py38h06a4308_0
- attrs=20.3.0=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- bcrypt=3.2.0=py38h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py38h06a4308_0
- boto3=1.16.7=pyhd3eb1b0_0
- botocore=1.19.7=pyhd3eb1b0_0
- brotlipy=0.7.0=py38h27cfd23_1003
- bzip2=1.0.8=h7b6447c_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.4.13=h06a4308_1
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2020.12.5=py38h06a4308_0
- cffi=1.14.3=py38h261ae71_2
- chardet=3.0.4=py38h06a4308_1003
- click=7.1.2=pyhd3eb1b0_0
- cloudpickle=1.6.0=py_0
- configparser=5.0.1=py_0
- cpuonly=1.0=0
- cryptography=3.1.1=py38h1ba5d50_0
- cycler=0.10.0=py38_0
- cython=0.29.21=py38h2531618_0
- decorator=4.4.2=pyhd3eb1b0_0
- dill=0.3.2=py_0
- docutils=0.15.2=py38h06a4308_1
- entrypoints=0.3=py38_0
- ffmpeg=4.2.2=h20bf706_0
- flask=1.1.2=pyhd3eb1b0_0
- freetype=2.10.4=h5ab3b9f_0
- fsspec=0.8.3=py_0
- future=0.18.2=py38_1
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.12=pyhd3eb1b0_1
- gmp=6.1.2=h6c8ec71_1
- gnutls=3.6.15=he1e5248_0
- google-auth=1.22.1=py_0
- google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
- google-pasta=0.2.0=py_0
- gunicorn=20.0.4=py38h06a4308_0
- h5py=2.10.0=py38h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=2.0.0=py_1
- intel-openmp=2019.4=243
- ipykernel=5.3.4=py38h5ca1d4c_0
- ipython=7.19.0=py38hb070fc8_1
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=pyhd3eb1b0_0
- jedi=0.17.2=py38h06a4308_1
- jinja2=2.11.2=pyhd3eb1b0_0
- jmespath=0.10.0=py_0
- joblib=0.17.0=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=6.1.7=py_0
- jupyter_core=4.6.3=py38_0
- kiwisolver=1.3.0=py38h2531618_0
- krb5=1.17.1=h173b8e3_0
- lame=3.100=h7b6447c_0
- lcms2=2.11=h396b838_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20191231=h14c3975_1
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libidn2=2.3.0=h27cfd23_0
- libopus=1.3.1=h7b6447c_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0
- libprotobuf=3.13.0.1=hd408876_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtasn1=4.16.0=h27cfd23_0
- libtiff=4.1.0=h2733197_1
- libunistring=0.9.10=h27cfd23_0
- libuv=1.40.0=h7b6447c_0
- libvpx=1.7.0=h439df22_0
- lightgbm=3.1.1=py38h2531618_0
- lz4-c=1.9.2=heb0550a_3
- mako=1.1.3=py_0
- markdown=3.3.3=py38h06a4308_0
- markupsafe=1.1.1=py38h7b6447c_0
- matplotlib-base=3.2.2=py38hef1b27d_0
- mkl=2019.4=243
- mkl-service=2.3.0=py38he904b0f_0
- mkl_fft=1.2.0=py38h23d657b_0
- mkl_random=1.1.0=py38h962f231_0
- more-itertools=8.6.0=pyhd3eb1b0_0
- multidict=5.1.0=py38h27cfd23_2
- ncurses=6.2=he6710b0_1
- nettle=3.7.2=hbbd107a_1
- networkx=2.5.1=pyhd3eb1b0_0
- ninja=1.10.2=hff7bd54_1
- nltk=3.5=py_0
- numpy=1.19.2=py38h54aff64_0
- numpy-base=1.19.2=py38hfa32c7d_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openh264=2.1.0=hd408876_0
- openssl=1.1.1k=h27cfd23_0
- packaging=20.4=py_0
- pandas=1.1.5=py38ha9443f7_0
- paramiko=2.7.2=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py38_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.0.1=py38he98fc37_0
- pip=20.2.4=py38h06a4308_0
- plotly=4.14.3=pyhd3eb1b0_0
- prompt-toolkit=3.0.8=py_0
- prompt_toolkit=3.0.8=0
- protobuf=3.13.0.1=py38he6710b0_1
- psutil=5.7.2=py38h7b6447c_0
- psycopg2=2.8.5=py38h3c74f83_1
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pygments=2.7.2=pyhd3eb1b0_0
- pyjwt=1.7.1=py38_0
- pynacl=1.4.0=py38h7b6447c_1
- pyodbc=4.0.30=py38he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.8=hdb3f193_4
- python-dateutil=2.8.1=pyhd3eb1b0_0
- python-editor=1.0.4=py_0
- pytorch=1.8.1=py3.8_cpu_0
- pytz=2020.5=pyhd3eb1b0_0
- pyzmq=19.0.2=py38he6710b0_1
- readline=8.0=h7b6447c_0
- regex=2020.10.15=py38h7b6447c_0
- requests=2.24.0=py_0
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py_2
- rsa=4.7.2=pyhd3eb1b0_1
- s3transfer=0.3.6=pyhd3eb1b0_0
- scikit-learn=0.23.2=py38h0573a6f_0
- scipy=1.5.2=py38h0b6359f_0
- setuptools=50.3.1=py38h06a4308_1
- simplejson=3.17.2=py38h27cfd23_2
- six=1.15.0=py38h06a4308_0
- smmap=3.0.5=pyhd3eb1b0_0
- sqlite=3.33.0=h62c20be_0
- sqlparse=0.4.1=py_0
- statsmodels=0.12.0=py38h7b6447c_0
- tabulate=0.8.7=py38h06a4308_0
- threadpoolctl=2.1.0=pyh5ca1d4c_0
- tk=8.6.10=hbc83047_0
- torchvision=0.9.1=py38_cpu
- tornado=6.0.4=py38h7b6447c_1
- tqdm=4.50.2=py_0
- traitlets=5.0.5=pyhd3eb1b0_0
- typing-extensions=3.7.4.3=hd3eb1b0_0
- typing_extensions=3.7.4.3=pyh06a4308_0
- unixodbc=2.3.9=h7b6447c_0
- urllib3=1.25.11=py_0
- wcwidth=0.2.5=py_0
- websocket-client=0.57.0=py38_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.35.1=pyhd3eb1b0_0
- wrapt=1.12.1=py38h7b6447c_1
- x264=1!157.20191217=h7b6447c_0
- xz=5.2.5=h7b6447c_0
- yarl=1.6.3=py38h27cfd23_0
- zeromq=4.3.3=he6710b0_3
- zipp=3.4.0=pyhd3eb1b0_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.5=h9ceee32_0
- pip:
- argon2-cffi==20.1.0
- astunparse==1.6.3
- async-generator==1.10
- azure-core==1.11.0
- azure-storage-blob==12.7.1
- bleach==3.3.0
- confuse==1.4.0
- convertdate==2.3.2
- databricks-cli==0.14.3
- defusedxml==0.7.1
- diskcache==5.2.1
- docker==4.4.4
- facets-overview==1.0.0
- flatbuffers==1.12
- gast==0.3.3
- grpcio==1.32.0
- hijri-converter==2.1.1
- holidays==0.10.5.2
- horovod==0.21.3
- htmlmin==0.1.12
- imagehash==4.2.0
- ipywidgets==7.6.3
- joblibspark==0.3.0
- jsonschema==3.2.0
- jupyterlab-pygments==0.1.2
- jupyterlab-widgets==1.0.0
- keras-preprocessing==1.1.2
- koalas==1.8.0
- korean-lunar-calendar==0.2.1
- llvmlite==0.36.0
- missingno==0.4.2
- mistune==0.8.4
- mleap==0.16.1
- mlflow-skinny==1.17.0
- msrest==0.6.21
- nbclient==0.5.3
- nbconvert==6.0.7
- nbformat==5.1.3
- nest-asyncio==1.5.1
- notebook==6.4.0
- numba==0.53.1
- opt-einsum==3.3.0
- pandas-profiling==2.11.0
- pandocfilters==1.4.3
- petastorm==0.10.0
- phik==0.11.2
- prometheus-client==0.10.1
- pyarrow==1.0.1
- pymeeus==0.5.11
- pyrsistent==0.17.3
- pywavelets==1.1.1
- pyyaml==5.4.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- send2trash==1.5.0
- shap==0.39.0
- slicer==0.0.7
- spark-tensorflow-distributor==0.1.0
- tangled-up-in-unicode==0.1.0
- tensorboard==2.4.1
- tensorboard-plugin-wit==1.8.0
- tensorflow-cpu==2.4.1
- tensorflow-estimator==2.4.0
- termcolor==1.1.0
- terminado==0.9.5
- testpath==0.5.0
- visions==0.6.0
- webencodings==0.5.1
- widgetsnbextension==3.5.1
- xgboost==1.4.1
prefix: /databricks/conda/envs/databricks-ml
Python libraries on GPU clusters
name: databricks-ml-gpu
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.11.0=pyhd3eb1b0_1
- aiohttp=3.7.4=py38h27cfd23_1
- asn1crypto=1.4.0=py_0
- astor=0.8.1=py38h06a4308_0
- async-timeout=3.0.1=py38h06a4308_0
- attrs=20.3.0=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- bcrypt=3.2.0=py38h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py38h06a4308_0
- boto3=1.16.7=pyhd3eb1b0_0
- botocore=1.19.7=pyhd3eb1b0_0
- brotlipy=0.7.0=py38h27cfd23_1003
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.4.13=h06a4308_1
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2020.12.5=py38h06a4308_0
- cffi=1.14.3=py38h261ae71_2
- chardet=3.0.4=py38h06a4308_1003
- click=7.1.2=pyhd3eb1b0_0
- cloudpickle=1.6.0=py_0
- configparser=5.0.1=py_0
- cryptography=3.1.1=py38h1ba5d50_0
- cycler=0.10.0=py38_0
- cython=0.29.21=py38h2531618_0
- decorator=4.4.2=pyhd3eb1b0_0
- dill=0.3.2=py_0
- docutils=0.15.2=py38h06a4308_1
- entrypoints=0.3=py38_0
- flask=1.1.2=pyhd3eb1b0_0
- freetype=2.10.4=h5ab3b9f_0
- fsspec=0.8.3=py_0
- future=0.18.2=py38_1
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.12=pyhd3eb1b0_1
- google-auth=1.22.1=py_0
- google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
- google-pasta=0.2.0=py_0
- grpcio=1.31.0=py38hf8bcb03_0
- gunicorn=20.0.4=py38h06a4308_0
- h5py=2.10.0=py38h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=2.0.0=py_1
- intel-openmp=2019.4=243
- ipykernel=5.3.4=py38h5ca1d4c_0
- ipython=7.19.0=py38hb070fc8_1
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=pyhd3eb1b0_0
- jedi=0.17.2=py38h06a4308_1
- jinja2=2.11.2=pyhd3eb1b0_0
- jmespath=0.10.0=py_0
- joblib=0.17.0=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=6.1.7=py_0
- jupyter_core=4.6.3=py38_0
- kiwisolver=1.3.0=py38h2531618_0
- krb5=1.17.1=h173b8e3_0
- lcms2=2.11=h396b838_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20191231=h14c3975_1
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0
- libprotobuf=3.13.0.1=hd408876_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_1
- lightgbm=3.1.1=py38h2531618_0
- lz4-c=1.9.2=heb0550a_3
- mako=1.1.3=py_0
- markdown=3.3.3=py38h06a4308_0
- markupsafe=1.1.1=py38h7b6447c_0
- matplotlib-base=3.2.2=py38hef1b27d_0
- mkl=2019.4=243
- mkl-service=2.3.0=py38he904b0f_0
- mkl_fft=1.2.0=py38h23d657b_0
- mkl_random=1.1.0=py38h962f231_0
- more-itertools=8.6.0=pyhd3eb1b0_0
- multidict=5.1.0=py38h27cfd23_2
- ncurses=6.2=he6710b0_1
- networkx=2.5.1=pyhd3eb1b0_0
- nltk=3.5=py_0
- numpy=1.19.2=py38h54aff64_0
- numpy-base=1.19.2=py38hfa32c7d_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openssl=1.1.1k=h27cfd23_0
- packaging=20.4=py_0
- pandas=1.1.5=py38ha9443f7_0
- paramiko=2.7.2=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py38_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.0.1=py38he98fc37_0
- pip=20.2.4=py38h06a4308_0
- plotly=4.14.3=pyhd3eb1b0_0
- prompt-toolkit=3.0.8=py_0
- prompt_toolkit=3.0.8=0
- protobuf=3.13.0.1=py38he6710b0_1
- psutil=5.7.2=py38h7b6447c_0
- psycopg2=2.8.5=py38h3c74f83_1
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pygments=2.7.2=pyhd3eb1b0_0
- pyjwt=1.7.1=py38_0
- pynacl=1.4.0=py38h7b6447c_1
- pyodbc=4.0.30=py38he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.8=hdb3f193_4
- python-dateutil=2.8.1=pyhd3eb1b0_0
- python-editor=1.0.4=py_0
- pytz=2020.5=pyhd3eb1b0_0
- pyzmq=19.0.2=py38he6710b0_1
- readline=8.0=h7b6447c_0
- regex=2020.10.15=py38h7b6447c_0
- requests=2.24.0=py_0
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py_2
- rsa=4.7.2=pyhd3eb1b0_1
- s3transfer=0.3.6=pyhd3eb1b0_0
- scikit-learn=0.23.2=py38h0573a6f_0
- scipy=1.5.2=py38h0b6359f_0
- setuptools=50.3.1=py38h06a4308_1
- simplejson=3.17.2=py38h27cfd23_2
- six=1.15.0=py38h06a4308_0
- smmap=3.0.5=pyhd3eb1b0_0
- sqlite=3.33.0=h62c20be_0
- sqlparse=0.4.1=py_0
- statsmodels=0.12.0=py38h7b6447c_0
- tabulate=0.8.7=py38h06a4308_0
- threadpoolctl=2.1.0=pyh5ca1d4c_0
- tk=8.6.10=hbc83047_0
- tornado=6.0.4=py38h7b6447c_1
- tqdm=4.50.2=py_0
- traitlets=5.0.5=pyhd3eb1b0_0
- typing-extensions=3.7.4.3=hd3eb1b0_0
- typing_extensions=3.7.4.3=pyh06a4308_0
- unixodbc=2.3.9=h7b6447c_0
- urllib3=1.25.11=py_0
- wcwidth=0.2.5=py_0
- websocket-client=0.57.0=py38_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.35.1=pyhd3eb1b0_0
- wrapt=1.12.1=py38h7b6447c_1
- xz=5.2.5=h7b6447c_0
- yarl=1.6.3=py38h27cfd23_0
- zeromq=4.3.3=he6710b0_3
- zipp=3.4.0=pyhd3eb1b0_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.5=h9ceee32_0
- pip:
- argon2-cffi==20.1.0
- astunparse==1.6.3
- async-generator==1.10
- azure-core==1.11.0
- azure-storage-blob==12.7.1
- bleach==3.3.0
- confuse==1.4.0
- convertdate==2.3.2
- databricks-cli==0.14.3
- defusedxml==0.7.1
- diskcache==5.2.1
- docker==4.4.4
- facets-overview==1.0.0
- flatbuffers==1.12
- gast==0.3.3
- hijri-converter==2.1.1
- holidays==0.10.5.2
- horovod==0.21.3
- htmlmin==0.1.12
- imagehash==4.2.0
- ipywidgets==7.6.3
- joblibspark==0.3.0
- jsonschema==3.2.0
- jupyterlab-pygments==0.1.2
- jupyterlab-widgets==1.0.0
- keras-preprocessing==1.1.2
- koalas==1.8.0
- korean-lunar-calendar==0.2.1
- llvmlite==0.36.0
- missingno==0.4.2
- mistune==0.8.4
- mleap==0.16.1
- mlflow-skinny==1.17.0
- msrest==0.6.21
- nbclient==0.5.3
- nbconvert==6.0.7
- nbformat==5.1.3
- nest-asyncio==1.5.1
- notebook==6.4.0
- numba==0.53.1
- opt-einsum==3.3.0
- pandas-profiling==2.11.0
- pandocfilters==1.4.3
- petastorm==0.10.0
- phik==0.11.2
- pyarrow==1.0.1
- pymeeus==0.5.11
- pyrsistent==0.17.3
- pywavelets==1.1.1
- pyyaml==5.4.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- send2trash==1.5.0
- shap==0.39.0
- slicer==0.0.7
- spark-tensorflow-distributor==0.1.0
- tangled-up-in-unicode==0.1.0
- tensorboard==2.4.1
- tensorboard-plugin-wit==1.8.0
- tensorflow==2.4.1
- tensorflow-estimator==2.4.0
- termcolor==1.1.0
- terminado==0.9.5
- testpath==0.5.0
- torch==1.8.1
- torchvision==0.9.1
- visions==0.6.0
- webencodings==0.5.1
- widgetsnbextension==3.5.1
- xgboost==1.4.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Spark packages containing Python modules
Spark Package | Python Module | Version |
---|---|---|
graphframes | graphframes | 0.8.1-db3-spark3.1 |
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 8.3.
Java and Scala libraries (Scala 2.12 cluster)
In addition to Java and Scala libraries in Databricks Runtime 8.3, Databricks Runtime 8.3 ML contains the following JARs:
CPU clusters
Group ID | Artifact ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.4.1 |
ml.dmlc | xgboost4j_2.12 | 1.4.1 |
org.mlflow | mlflow-client | 1.17.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
GPU clusters
Group ID | Artifact ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.4.1 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.4.1 |
org.mlflow | mlflow-client | 1.17.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |