MLflow experiment
The MLflow experiment data source provides a standard API to load MLflow experiment run data. You can load data from the notebook experiment, or you can use the MLflow experiment name or experiment ID.
Requirements
Databricks Runtime 6.0 ML or above.
Load data from the notebook experiment
To load data from the notebook experiment, use load()
.
Python
df = spark.read.format("mlflow-experiment").load()
display(df)
Scala
val df = spark.read.format("mlflow-experiment").load()
display(df)
Load data using experiment IDs
To load data from one or more workspace experiments, specify the experiment IDs as shown.
Python
df = spark.read.format("mlflow-experiment").load("3270527066281272")
display(df)
Scala
val df = spark.read.format("mlflow-experiment").load("3270527066281272,953590262154175")
display(df)
Load data using experiment name
You can also pass the experiment name to the load()
method.
Python
expId = mlflow.get_experiment_by_name("/Shared/diabetes_experiment/").experiment_id
df = spark.read.format("mlflow-experiment").load(expId)
display(df)
Scala
val expId = mlflow.getExperimentByName("/Shared/diabetes_experiment/").get.getExperimentId
val df = spark.read.format("mlflow-experiment").load(expId)
display(df)
Filter data based on metrics and parameters
The examples in this section show how you can filter data after loading it from an experiment.
Python
df = spark.read.format("mlflow-experiment").load("3270527066281272")
filtered_df = df.filter("metrics.loss < 0.01 AND params.learning_rate > '0.001'")
display(filtered_df)
Scala
val df = spark.read.format("mlflow-experiment").load("3270527066281272")
val filtered_df = df.filter("metrics.loss < 1.85 AND params.num_epochs > '30'")
display(filtered_df)
Schema
The schema of the DataFrame returned by the data source is:
root
|-- run_id: string
|-- experiment_id: string
|-- metrics: map
| |-- key: string
| |-- value: double
|-- params: map
| |-- key: string
| |-- value: string
|-- tags: map
| |-- key: string
| |-- value: string
|-- start_time: timestamp
|-- end_time: timestamp
|-- status: string
|-- artifact_uri: string