Compartir a través de

使用文档智能模型

此内容适用于:选中标记 v3.1 (GA) | 先前版本:蓝色复选标记 v3.0 蓝色复选标记 v2.1

此内容适用于: 选中标记 v3.0 (GA) | 最新版本: 紫色复原标记 v3.1 | 先前版本: 蓝色复选标记 v2.1

此内容适用于:选中标记 v2.1

本指南介绍如何将文档智能模型添加到应用程序和工作流中。 可以使用所选编程语言 SDK 或 REST API。

Azure AI 文档智能是一个基于云的 Azure AI 服务,它使用机器学习从文档中提取关键文本和结构元素。 我们建议你在学习该技术时使用免费服务。 请记住,每月的免费页数限于 500。

从以下文档智能模型中选择一种模型,分析并提取表单和文档中的数据和值:

  • 预生成读取模型是所有文档智能模型的核心,可以检测行、字词、位置和语言。 布局、常规文档、预生成和自定义模型都使用 read 模型作为从文档中提取文本的基础。

  • 预生成布局模型从文档和图像中提取文本和文本位置、表、选择标记和结构信息。 可以使用布局模型并启用可选的查询字符串参数 features=keyValuePairs 来提取键/值对。

  • prebuilt-contract 模型从合同协议中提取关键信息。

  • prebuilt-healthInsuranceCard.us 模型可从美国医疗保险卡中提取重要信息。

  • 预生成税务文件模型模型提取美国税务表单上报告的信息。

  • 预生成发票模型会从各种格式和质量的销售发票中提取关键字段和行项。 字段包括手机捕获的图像、扫描的文档和数字 PDF。

  • 预生成收据模型提取印刷体和手写体销售收据中的关键信息。

  • 预生成 idDocument 模型从美国驾驶执照、国际护照个人资料页、美国各州身份证、社会保障卡和永久居民卡中提取关键信息。

先决条件

  • Azure 订阅 - 创建试用订阅

  • Visual Studio IDE

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • 在 URL 中的文档文件。 对于本项目,可以使用下表中为每项功能提供的示例表单:

    功能 modelID document-url
    “读取”模型 prebuilt-read 示例手册
    布局模型 预生成布局 预订确认示例
    W-2 窗体模型 prebuilt-tax.us.w2 示例 W-2 表单
    发票模型 预生成的发票 示例发票
    收据模型 prebuilt-receipt 示例收据
    ID 文档模型 prebuilt-idDocument 示例身份证明文档
    名片模型 prebuilt-businessCard 名片示例

设置环境变量

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,请使用 Azure 门户中的 keyendpoint 实例化客户端。 对于此项目,使用环境变量来存储和访问凭据。

重要

如果使用 API 密钥,请将其安全地存储在某个其他位置,例如 Azure Key Vault 中。 请不要直接在代码中包含 API 密钥,并且切勿公开发布该密钥。

有关 Azure AI 服务安全性的详细信息,请参阅对 Azure AI 服务的请求进行身份验证

若要为文档智能资源密钥设置环境变量,请打开控制台窗口,按照操作系统和开发环境的说明进行操作。 将 <yourKey><yourEndpoint> 替换为 Azure 门户中资源的值。

环境变量不区分大小写。 它们通常以大写形式声明,其中包含的单词以下划线联接。 请根据命令提示符运行以下命令:

  1. 设置密钥变量:

    setx DI_KEY <yourKey>
    
  2. 设置终结点变量

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 设置环境变量后关闭命令提示符窗口。 这些值将一直保留,直到你再次更改它们。

  4. 重启任何读取环境变量的运行程序。 例如,如果正在使用 Visual Studio 或 Visual Studio Code 作为编辑器,请在运行示例代码之前重启它。

下面是其他一些可与环境变量一起使用的有用命令:

命令 操作 示例
setx VARIABLE_NAME= 通过将环境变量值设置为空字符串来删除环境变量。 setx DI_KEY=
setx VARIABLE_NAME=value 设置或更改环境变量的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 显示特定环境变量的值。 set DI_KEY
set 显示所有环境变量。 set

设置编程环境

  1. 启动 Visual Studio。

  2. 在“开始”页上,选择“创建新项目”

    Visual Studio 开始窗口的屏幕截图。

  3. 在“创建新项目”页面上,在搜索框中输入“控制台”。 选择“控制台应用程序”模板,然后选择“下一步”。

    Visual Studio“创建新项目”页面的屏幕截图。

  4. 在“配置新项目”页的“项目名称”下,输入 docIntelligence_app。 然后,选择“下一步”。

    Visual Studio“配置新项目页面”的屏幕截图。

  5. 在“其他信息”页面中,选择“.NET 8.0 (长期支持)”,然后选择“创建”。

    Visual Studio“其他信息”页面的屏幕截图。

使用 NuGet 安装客户端库

  1. 右键单击 docIntelligence_app 项目,然后选择“管理 NuGet 包...”。

    在 Visual Studio 中选择 NuGet 包窗口的屏幕截图。

  2. 选择“浏览”选项卡,并输入 Azure.AI.FormRecognizer

    在 Visual Studio 中选择预发布 NuGet 包的屏幕截图。

  3. 从下拉菜单中选择一个版本,然后将包安装到项目中。

生成应用程序

注意

从 .NET 6 开始,使用 console 模板的新项目将生成与以前版本不同的新程序样式。 新的输出使用最新的 C# 功能,这些功能简化了你需要编写的代码。

使用较新版本时,只需编写 Main 方法的主体。 无需包括顶级语句、全局 using 指令或隐式 using 指令。 有关详细信息,请参阅 C# 控制台应用模板生成顶级语句

  1. 打开 Program.cs 文件。

  2. 删除现有的代码,包括 Console.Writeline("Hello World!") 行。

  3. 选择以下代码示例之一,然后将其复制并粘贴到应用程序的 Program.cs 文件中:

  4. 将代码示例添加到应用程序后,选择项目名称旁边的绿色“开始”按钮以生成和运行程序,或按 F5 键。

    运行 Visual Studio 程序的屏幕截图。

使用“读取”模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

//sample document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-read", fileUri);
AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("Detected languages:");

foreach (DocumentLanguage language in result.Languages)
{
    Console.WriteLine($"  Found language with locale'{language.Locale}' with confidence {language.Confidence}.");
}

请访问 GitHub 上的 Azure 示例存储库,并查看 read 模型输出

使用布局模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri ("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-layout", fileUri);

AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

Console.WriteLine("Paragraphs:");

foreach (DocumentParagraph paragraph in result.Paragraphs)
{
    Console.WriteLine($"  Paragraph content: {paragraph.Content}");

    if (paragraph.Role != null)
    {
        Console.WriteLine($"    Role: {paragraph.Role}");
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看布局模型输出

使用“常规文档”模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-document", fileUri);

AnalyzeResult result = operation.Value;

Console.WriteLine("Detected key-value pairs:");

foreach (DocumentKeyValuePair kvp in result.KeyValuePairs)
{
    if (kvp.Value == null)
    {
        Console.WriteLine($"  Found key with no value: '{kvp.Key.Content}'");
    }
    else
    {
        Console.WriteLine($"  Found key-value pair: '{kvp.Key.Content}' and '{kvp.Value.Content}'");
    }
}

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看常规文档模型输出

使用 W-2 税务模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri w2Uri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-tax.us.w2", w2Uri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("AdditionalInfo", out DocumentField? additionalInfoField))
    {
        if (additionalInfoField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField infoField in additionalInfoField.Value.AsList())
            {
                Console.WriteLine("AdditionalInfo:");

                if (infoField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> infoFields = infoField.Value.AsDictionary();

                    if (infoFields.TryGetValue("Amount", out DocumentField? amountField))
                    {
                        if (amountField.FieldType == DocumentFieldType.Double)
                        {
                            double amount = amountField.Value.AsDouble();

                            Console.WriteLine($"  Amount: '{amount}', with confidence {amountField.Confidence}");
                        }
                    }

                    if (infoFields.TryGetValue("LetterCode", out DocumentField? letterCodeField))
                    {
                        if (letterCodeField.FieldType == DocumentFieldType.String)
                        {
                            string letterCode = letterCodeField.Value.AsString();

                            Console.WriteLine($"  LetterCode: '{letterCode}', with confidence {letterCodeField.Confidence}");
                        }
                    }
                }
            }
        }
    }


    if (document.Fields.TryGetValue("AllocatedTips", out DocumentField? allocatedTipsField))
    {
        if (allocatedTipsField.FieldType == DocumentFieldType.Double)
        {
            double allocatedTips = allocatedTipsField.Value.AsDouble();
            Console.WriteLine($"Allocated Tips: '{allocatedTips}', with confidence {allocatedTipsField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Employer", out DocumentField? employerField))
    {
        if (employerField.FieldType == DocumentFieldType.Dictionary)
        {
            IReadOnlyDictionary<string, DocumentField> employerFields = employerField.Value.AsDictionary();

            if (employerFields.TryGetValue("Name", out DocumentField? employerNameField))
            {
                if (employerNameField.FieldType == DocumentFieldType.String)
                {
                    string name = employerNameField.Value.AsString();

                    Console.WriteLine($"Employer Name: '{name}', with confidence {employerNameField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("IdNumber", out DocumentField? idNumberField))
            {
                if (idNumberField.FieldType == DocumentFieldType.String)
                {
                    string id = idNumberField.Value.AsString();

                    Console.WriteLine($"Employer ID Number: '{id}', with confidence {idNumberField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("Address", out DocumentField? addressField))
            {
                if (addressField.FieldType == DocumentFieldType.Address)
                {
                    Console.WriteLine($"Employer Address: '{addressField.Content}', with confidence {addressField.Confidence}");
                }
            }
        }
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看 W-2 税务模型输出

使用发票模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri invoiceUri = new Uri("https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-invoice", invoiceUri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("VendorName", out DocumentField vendorNameField))
    {
        if (vendorNameField.FieldType == DocumentFieldType.String)
        {
            string vendorName = vendorNameField.Value.AsString();
            Console.WriteLine($"Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("CustomerName", out DocumentField customerNameField))
    {
        if (customerNameField.FieldType == DocumentFieldType.String)
        {
            string customerName = customerNameField.Value.AsString();
            Console.WriteLine($"Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("Amount", out DocumentField itemAmountField))
                    {
                        if (itemAmountField.FieldType == DocumentFieldType.Currency)
                        {
                            CurrencyValue itemAmount = itemAmountField.Value.AsCurrency();

                            Console.WriteLine($"  Amount: '{itemAmount.Symbol}{itemAmount.Amount}', with confidence {itemAmountField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (document.Fields.TryGetValue("SubTotal", out DocumentField subTotalField))
    {
        if (subTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue subTotal = subTotalField.Value.AsCurrency();
            Console.WriteLine($"Sub Total: '{subTotal.Symbol}{subTotal.Amount}', with confidence {subTotalField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("TotalTax", out DocumentField totalTaxField))
    {
        if (totalTaxField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue totalTax = totalTaxField.Value.AsCurrency();
            Console.WriteLine($"Total Tax: '{totalTax.Symbol}{totalTax.Amount}', with confidence {totalTaxField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("InvoiceTotal", out DocumentField invoiceTotalField))
    {
        if (invoiceTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue invoiceTotal = invoiceTotalField.Value.AsCurrency();
            Console.WriteLine($"Invoice Total: '{invoiceTotal.Symbol}{invoiceTotal.Amount}', with confidence {invoiceTotalField.Confidence}");
        }
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看发票模型输出

使用收据模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri receiptUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-receipt", receiptUri);

AnalyzeResult receipts = operation.Value;

foreach (AnalyzedDocument receipt in receipts.Documents)
{
    if (receipt.Fields.TryGetValue("MerchantName", out DocumentField merchantNameField))
    {
        if (merchantNameField.FieldType == DocumentFieldType.String)
        {
            string merchantName = merchantNameField.Value.AsString();

            Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("TransactionDate", out DocumentField transactionDateField))
    {
        if (transactionDateField.FieldType == DocumentFieldType.Date)
        {
            DateTimeOffset transactionDate = transactionDateField.Value.AsDate();

            Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("TotalPrice", out DocumentField itemTotalPriceField))
                    {
                        if (itemTotalPriceField.FieldType == DocumentFieldType.Double)
                        {
                            double itemTotalPrice = itemTotalPriceField.Value.AsDouble();

                            Console.WriteLine($"  Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (receipt.Fields.TryGetValue("Total", out DocumentField totalField))
    {
        if (totalField.FieldType == DocumentFieldType.Double)
        {
            double total = totalField.Value.AsDouble();

            Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
        }
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看收据模型输出

ID 文档模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document

Uri idDocumentUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-idDocument", idDocumentUri);

AnalyzeResult identityDocuments = operation.Value;

AnalyzedDocument identityDocument = identityDocuments.Documents.Single();

if (identityDocument.Fields.TryGetValue("Address", out DocumentField addressField))
{
    if (addressField.FieldType == DocumentFieldType.String)
    {
        string address = addressField.Value. AsString();
        Console.WriteLine($"Address: '{address}', with confidence {addressField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("CountryRegion", out DocumentField countryRegionField))
{
    if (countryRegionField.FieldType == DocumentFieldType.CountryRegion)
    {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($"CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfBirth", out DocumentField dateOfBirthField))
{
    if (dateOfBirthField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($"Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfExpiration", out DocumentField dateOfExpirationField))
{
    if (dateOfExpirationField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($"Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DocumentNumber", out DocumentField documentNumberField))
{
    if (documentNumberField.FieldType == DocumentFieldType.String)
    {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($"Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("FirstName", out DocumentField firstNameField))
{
    if (firstNameField.FieldType == DocumentFieldType.String)
    {
        string firstName = firstNameField.Value.AsString();
        Console.WriteLine($"First Name: '{firstName}', with confidence {firstNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("LastName", out DocumentField lastNameField))
{
    if (lastNameField.FieldType == DocumentFieldType.String)
    {
        string lastName = lastNameField.Value.AsString();
        Console.WriteLine($"Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Region", out DocumentField regionfield))
{
    if (regionfield.FieldType == DocumentFieldType.String)
    {
        string region = regionfield.Value.AsString();
        Console.WriteLine($"Region: '{region}', with confidence {regionfield.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Sex", out DocumentField sexfield))
{
    if (sexfield.FieldType == DocumentFieldType.String)
    {
        string sex = sexfield.Value.AsString();
        Console.WriteLine($"Sex: '{sex}', with confidence {sexfield.Confidence}");
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看 ID 文档模型输出

使用名片模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri businessCardUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/business-card-english.jpg");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-businessCard", businessCardUri);

AnalyzeResult businessCards = operation.Value;

foreach (AnalyzedDocument businessCard in businessCards.Documents)
{
    if (businessCard.Fields.TryGetValue("ContactNames", out DocumentField ContactNamesField))
    {
        if (ContactNamesField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField contactNameField in ContactNamesField.Value.AsList())
            {
                Console.WriteLine("Contact Name: ");

                if (contactNameField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> contactNameFields = contactNameField.Value.AsDictionary();

                    if (contactNameFields.TryGetValue("FirstName", out DocumentField firstNameField))
                    {
                        if (firstNameField.FieldType == DocumentFieldType.String)
                        {
                            string firstName = firstNameField.Value.AsString();

                            Console.WriteLine($"  First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                        }
                    }

                    if (contactNameFields.TryGetValue("LastName", out DocumentField lastNameField))
                    {
                        if (lastNameField.FieldType == DocumentFieldType.String)
                        {
                            string lastName = lastNameField.Value.AsString();

                            Console.WriteLine($"  Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("JobTitles", out DocumentField jobTitlesFields))
    {
        if (jobTitlesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField jobTitleField in jobTitlesFields.Value.AsList())
            {
                if (jobTitleField.FieldType == DocumentFieldType.String)
                {
                    string jobTitle = jobTitleField.Value.AsString();

                    Console.WriteLine($"Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Departments", out DocumentField departmentFields))
    {
        if (departmentFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField departmentField in departmentFields.Value.AsList())
            {
                if (departmentField.FieldType == DocumentFieldType.String)
                {
                    string department = departmentField.Value.AsString();

                    Console.WriteLine($"Department: '{department}', with confidence {departmentField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Emails", out DocumentField emailFields))
    {
        if (emailFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField emailField in emailFields.Value.AsList())
            {
                if (emailField.FieldType == DocumentFieldType.String)
                {
                    string email = emailField.Value.AsString();

                    Console.WriteLine($"Email: '{email}', with confidence {emailField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Websites", out DocumentField websiteFields))
    {
        if (websiteFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField websiteField in websiteFields.Value.AsList())
            {
                if (websiteField.FieldType == DocumentFieldType.String)
                {
                    string website = websiteField.Value.AsString();

                    Console.WriteLine($"Website: '{website}', with confidence {websiteField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("MobilePhones", out DocumentField mobilePhonesFields))
    {
        if (mobilePhonesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField mobilePhoneField in mobilePhonesFields.Value.AsList())
            {
                if (mobilePhoneField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

                    Console.WriteLine($"Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("WorkPhones", out DocumentField workPhonesFields))
    {
        if (workPhonesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField workPhoneField in workPhonesFields.Value.AsList())
            {
                if (workPhoneField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string workPhone = workPhoneField.Value.AsPhoneNumber();

                    Console.WriteLine($"Work phone number: '{workPhone}', with confidence {workPhoneField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Faxes", out DocumentField faxesFields))
    {
        if (faxesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField faxField in faxesFields.Value.AsList())
            {
                if (faxField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string fax = faxField.Value.AsPhoneNumber();

                    Console.WriteLine($"Fax phone number: '{fax}', with confidence {faxField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Addresses", out DocumentField addressesFields))
    {
        if (addressesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField addressField in addressesFields.Value.AsList())
            {
                if (addressField.FieldType == DocumentFieldType.String)
                {
                    string address = addressField.Value.AsString();

                    Console.WriteLine($"Address: '{address}', with confidence {addressField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("CompanyNames", out DocumentField companyNamesFields))
    {
        if (companyNamesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField companyNameField in companyNamesFields.Value.AsList())
            {
                if (companyNameField.FieldType == DocumentFieldType.String)
                {
                    string companyName = companyNameField.Value.AsString();

                    Console.WriteLine($"Company name: '{companyName}', with confidence {companyNameField.Confidence}");
                }
            }
        }
    }
}

请访问 GitHub 上的 Azure 示例存储库,并查看名片模型输出

先决条件

  • Azure 订阅 - 创建试用订阅

  • 最新版本的 Visual Studio Code 或者你首选的 IDE。 请参阅 Visual Studio Code 中的 Java

    • Visual Studio Code 提供了适用于 Windows 和 macOS 的 Java 编码包。 该编码包是 VS Code、Java 开发工具包 (JDK) 和 Microsoft 建议扩展的集合。 编码包还可用于修复现有开发环境。
    • 如果使用的是 VS Code 和适用于 Java 的编码包,请安装 Gradle for Java 扩展。

    如果不使用 Visual Studio Code,请确保在开发环境中安装了以下内容:

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

    提示

    如果计划通过一个终结点和密钥访问多个 Azure AI 服务,请创建 Azure AI 服务资源。 请创建仅供文档智能访问的文档智能资源。 若要使用 Microsoft Entra 身份验证,则需要单服务资源。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • URL 中的文档文件。 对于本项目,可以使用下表中为每项功能提供的示例表单:

    功能 modelID document-url
    “读取”模型 prebuilt-read 示例手册
    布局模型 预生成布局 预订确认示例
    W-2 窗体模型 prebuilt-tax.us.w2 示例 W-2 表单
    发票模型 预生成的发票 示例发票
    收据模型 prebuilt-receipt 示例收据
    ID 文档模型 prebuilt-idDocument 示例身份证明文档
    名片模型 prebuilt-businessCard 名片示例

设置环境变量

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,请使用 Azure 门户中的 keyendpoint 实例化客户端。 对于此项目,使用环境变量来存储和访问凭据。

重要

如果使用 API 密钥,请将其安全地存储在某个其他位置,例如 Azure Key Vault 中。 请不要直接在代码中包含 API 密钥,并且切勿公开发布该密钥。

有关 Azure AI 服务安全性的详细信息,请参阅对 Azure AI 服务的请求进行身份验证

若要为文档智能资源密钥设置环境变量,请打开控制台窗口,按照操作系统和开发环境的说明进行操作。 将 <yourKey><yourEndpoint> 替换为 Azure 门户中资源的值。

环境变量不区分大小写。 它们通常以大写形式声明,其中包含的单词以下划线联接。 请根据命令提示符运行以下命令:

  1. 设置密钥变量:

    setx DI_KEY <yourKey>
    
  2. 设置终结点变量

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 设置环境变量后关闭命令提示符窗口。 这些值将一直保留,直到你再次更改它们。

  4. 重启任何读取环境变量的运行程序。 例如,如果正在使用 Visual Studio 或 Visual Studio Code 作为编辑器,请在运行示例代码之前重启它。

下面是其他一些可与环境变量一起使用的有用命令:

命令 操作 示例
setx VARIABLE_NAME= 通过将环境变量值设置为空字符串来删除环境变量。 setx DI_KEY=
setx VARIABLE_NAME=value 设置或更改环境变量的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 显示特定环境变量的值。 set DI_KEY
set 显示所有环境变量。 set

设置编程环境

若要设置编程环境,请创建 Gradle 项目并安装客户端库。

创建新的 Gradle 项目

  1. 在控制台窗口中,为你的应用 (名为“form-recognizer-app”) 创建一个新目录,然后导航到该目录。

    mkdir form-recognizer-app
    cd form-recognizer-app
    
  2. 从工作目录运行 gradle init 命令。 此命令将创建 Gradle 的基本生成文件,其中包括 build.gradle.kts - 在运行时将使用该文件创建并配置应用程序。

    gradle init --type basic
    
  3. 当提示你选择一个 DSL 时,选择 Kotlin

  4. 选择“Enter”以接受默认项目名称 (form-recognizer-app)

安装客户端库

本文使用 Gradle 依赖项管理器。 可以在 Maven 中央存储库中找到客户端库以及其他依赖项管理器的信息。

  1. 在 IDE 中打开项目的 build.gradle.kts 文件。 复制并粘贴以下代码,将客户端库作为 implementation 语句与所需的插件和设置一起包括在内。

    plugins {
        java
        application
    }
    application {
        mainClass.set("FormRecognizer")
    }
    repositories {
        mavenCentral()
    }
    dependencies {
        implementation(group = "com.azure", name = "azure-ai-formrecognizer", version = "4.0.0")
    }
    

创建 Java 应用程序

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,你要通过 Azure 门户使用 key 创建一个 AzureKeyCredential,并使用 AzureKeyCredential 和文档智能 endpoint 创建一个 DocumentAnalysisClient 实例。

  1. form-recognizer-app 目录中,运行以下命令:

    mkdir -p src/main/java
    

    创建以下目录结构:

    Java 目录结构的屏幕截图

  2. 导航到 java 目录,创建一个名为 FormRecognizer.java 的文件。

    提示

    可以使用 Powershell 创建新文件。 按住 Shift 键并右键单击文件夹,在项目目录中打开 PowerShell 窗口,然后输入以下命令:New-Item FormRecognizer.java

  3. 打开 FormRecognizer.java 文件,选择以下代码示例之一,然后将其复制/粘贴到你的应用程序中:

    • 预生成读取模型是所有文档智能模型的核心,可以检测行、字词、位置和语言。 布局、常规文档、预生成和自定义模型都使用 read 模型作为从文档中提取文本的基础。
    • 预生成布局模型从文档和图像中提取文本和文本位置、表、选择标记和结构信息。
    • 预生成 tax.us.w2 模型提取美国国内税收署 (IRS) 纳税表单上报告的信息。
    • 预生成发票模型会从各种格式和质量的销售发票中提取关键字段和行项。
    • 预生成收据模型提取印刷体和手写体销售收据中的关键信息。
    • 预生成 idDocument 模型从美国驾驶执照、国际护照个人资料页、美国各州身份证、社会保障卡和永久居民卡中提取关键信息。
  4. 键入以下命令:

    gradle build
    gradle -PmainClass=FormRecognizer run
    

使用“读取”模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png";

String modelId = "prebuilt-read";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, documentUrl);

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f.%n",
      documentWord.getContent(),
      documentWord.getConfidence()));
});
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看 read 模型输出

使用布局模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String layoutDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png";
String modelId = "prebuilt-layout";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, layoutDocumentUrl);

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f%n",
      documentWord.getContent(),
      documentWord.getConfidence()));

  // selection marks
  documentPage.getSelectionMarks().forEach(documentSelectionMark ->
    System.out.printf("Selection mark is '%s' and is within a bounding polygon %s with confidence %.2f.%n",
      documentSelectionMark.getSelectionMarkState().toString(),
      getBoundingCoordinates(documentSelectionMark.getBoundingPolygon()),
      documentSelectionMark.getConfidence()));
});

// tables
List < DocumentTable > tables = analyzeLayoutResult.getTables();
for (int i = 0; i < tables.size(); i++) {
  DocumentTable documentTables = tables.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTables.getRowCount(),
    documentTables.getColumnCount());
  documentTables.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n", documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

}

// Utility function to get the bounding polygon coordinates.
private static String getBoundingCoordinates(List < Point > boundingPolygon) {
  return boundingPolygon.stream().map(point -> String.format("[%.2f, %.2f]", point.getX(),
    point.getY())).collect(Collectors.joining(", "));
}

}

请访问 GitHub 上的 Azure 示例存储库,并查看布局模型输出

使用“常规文档”模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String generalDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf";
String modelId = "prebuilt-document";
SyncPoller < OperationResult, AnalyzeResult > analyzeDocumentPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, generalDocumentUrl);

AnalyzeResult analyzeResult = analyzeDocumentPoller.getFinalResult();

// pages
analyzeResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word %s has a confidence score of %.2f%n.",
      documentWord.getContent(),
      documentWord.getConfidence()));
});

// tables
List < DocumentTable > tab_les = analyzeResult.getTables();
for (int i = 0; i < tab_les.size(); i++) {
  DocumentTable documentTable = tab_les.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTable.getRowCount(),
    documentTable.getColumnCount());
  documentTable.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n",
      documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

// Key-value pairs
analyzeResult.getKeyValuePairs().forEach(documentKeyValuePair -> {
  System.out.printf("Key content: %s%n", documentKeyValuePair.getKey().getContent());
  System.out.printf("Key content bounding region: %s%n",
    documentKeyValuePair.getKey().getBoundingRegions().toString());

  if (documentKeyValuePair.getValue() != null) {
    System.out.printf("Value content: %s%n", documentKeyValuePair.getValue().getContent());
    System.out.printf("Value content bounding region: %s%n", documentKeyValuePair.getValue().getBoundingRegions().toString());
  }
});

}

}

请访问 GitHub 上的 Azure 示例存储库,并查看常规文档模型输出

使用 W-2 税务模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String w2Url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png";
String modelId = "prebuilt-tax.us.w2";

SyncPoller < OperationResult, AnalyzeResult > analyzeW2Poller =
  client.beginAnalyzeDocumentFromUrl(modelId, w2Url);

AnalyzeResult analyzeTaxResult = analyzeW2Poller.getFinalResult();

for (int i = 0; i < analyzeTaxResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedTaxDocument = analyzeTaxResult.getDocuments().get(i);
  Map < String, DocumentField > taxFields = analyzedTaxDocument.getFields();
  System.out.printf("----------- Analyzing Document  %d -----------%n", i);
  DocumentField w2FormVariantField = taxFields.get("W2FormVariant");
  if (w2FormVariantField != null) {
    if (DocumentFieldType.STRING == w2FormVariantField.getType()) {
      String merchantName = w2FormVariantField.getValueAsString();
      System.out.printf("Form variant: %s, confidence: %.2f%n",
        merchantName, w2FormVariantField.getConfidence());
    }
  }

  DocumentField employeeField = taxFields.get("Employee");
  if (employeeField != null) {
    System.out.println("Employee Data: ");
    if (DocumentFieldType.MAP == employeeField.getType()) {
      Map < String, DocumentField > employeeDataFieldMap = employeeField.getValueAsMap();
      DocumentField employeeName = employeeDataFieldMap.get("Name");
      if (employeeName != null) {
        if (DocumentFieldType.STRING == employeeName.getType()) {
          String employeesName = employeeName.getValueAsString();
          System.out.printf("Employee Name: %s, confidence: %.2f%n",
            employeesName, employeeName.getConfidence());
        }
      }
      DocumentField employeeAddrField = employeeDataFieldMap.get("Address");
      if (employeeAddrField != null) {
        if (DocumentFieldType.STRING == employeeAddrField.getType()) {
          String employeeAddress = employeeAddrField.getValueAsString();
          System.out.printf("Employee Address: %s, confidence: %.2f%n",
            employeeAddress, employeeAddrField.getConfidence());
        }
      }
    }
  }

  DocumentField employerField = taxFields.get("Employer");
  if (employerField != null) {
    System.out.println("Employer Data: ");
    if (DocumentFieldType.MAP == employerField.getType()) {
      Map < String, DocumentField > employerDataFieldMap = employerField.getValueAsMap();
      DocumentField employerNameField = employerDataFieldMap.get("Name");
      if (employerNameField != null) {
        if (DocumentFieldType.STRING == employerNameField.getType()) {
          String employerName = employerNameField.getValueAsString();
          System.out.printf("Employer Name: %s, confidence: %.2f%n",
            employerName, employerNameField.getConfidence());
        }
      }

      DocumentField employerIDNumberField = employerDataFieldMap.get("IdNumber");
      if (employerIDNumberField != null) {
        if (DocumentFieldType.STRING == employerIDNumberField.getType()) {
          String employerIdNumber = employerIDNumberField.getValueAsString();
          System.out.printf("Employee ID Number: %s, confidence: %.2f%n",
            employerIdNumber, employerIDNumberField.getConfidence());
        }
      }
    }
  }

  DocumentField taxYearField = taxFields.get("TaxYear");
  if (taxYearField != null) {
    if (DocumentFieldType.STRING == taxYearField.getType()) {
      String taxYear = taxYearField.getValueAsString();
      System.out.printf("Tax year: %s, confidence: %.2f%n",
        taxYear, taxYearField.getConfidence());
    }
  }

  DocumentField taxDateField = taxFields.get("TaxDate");
  if (taxDateField != null) {
    if (DocumentFieldType.DATE == taxDateField.getType()) {
      LocalDate taxDate = taxDateField.getValueAsDate();
      System.out.printf("Tax Date: %s, confidence: %.2f%n",
        taxDate, taxDateField.getConfidence());
    }
  }

  DocumentField socialSecurityTaxField = taxFields.get("SocialSecurityTaxWithheld");
  if (socialSecurityTaxField != null) {
    if (DocumentFieldType.DOUBLE == socialSecurityTaxField.getType()) {
      Double socialSecurityTax = socialSecurityTaxField.getValueAsDouble();
      System.out.printf("Social Security Tax withheld: %.2f, confidence: %.2f%n",
        socialSecurityTax, socialSecurityTaxField.getConfidence());
    }
  }
}
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看 W-2 税务模型输出

使用发票模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";
String modelId = "prebuilt-invoice";

SyncPoller < OperationResult, AnalyzeResult > analyzeInvoicesPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, invoiceUrl);

AnalyzeResult analyzeInvoiceResult = analyzeInvoicesPoller.getFinalResult();

for (int i = 0; i < analyzeInvoiceResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedInvoice = analyzeInvoiceResult.getDocuments().get(i);
  Map < String, DocumentField > invoiceFields = analyzedInvoice.getFields();
  System.out.printf("----------- Analyzing invoice  %d -----------%n", i);
  DocumentField vendorNameField = invoiceFields.get("VendorName");
  if (vendorNameField != null) {
    if (DocumentFieldType.STRING == vendorNameField.getType()) {
      String merchantName = vendorNameField.getValueAsString();
      System.out.printf("Vendor Name: %s, confidence: %.2f%n",
        merchantName, vendorNameField.getConfidence());
    }
  }

  DocumentField vendorAddressField = invoiceFields.get("VendorAddress");
  if (vendorAddressField != null) {
    if (DocumentFieldType.STRING == vendorAddressField.getType()) {
      String merchantAddress = vendorAddressField.getValueAsString();
      System.out.printf("Vendor address: %s, confidence: %.2f%n",
        merchantAddress, vendorAddressField.getConfidence());
    }
  }

  DocumentField customerNameField = invoiceFields.get("CustomerName");
  if (customerNameField != null) {
    if (DocumentFieldType.STRING == customerNameField.getType()) {
      String merchantAddress = customerNameField.getValueAsString();
      System.out.printf("Customer Name: %s, confidence: %.2f%n",
        merchantAddress, customerNameField.getConfidence());
    }
  }

  DocumentField customerAddressRecipientField = invoiceFields.get("CustomerAddressRecipient");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.STRING == customerAddressRecipientField.getType()) {
      String customerAddr = customerAddressRecipientField.getValueAsString();
      System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n",
        customerAddr, customerAddressRecipientField.getConfidence());
    }
  }

  DocumentField invoiceIdField = invoiceFields.get("InvoiceId");
  if (invoiceIdField != null) {
    if (DocumentFieldType.STRING == invoiceIdField.getType()) {
      String invoiceId = invoiceIdField.getValueAsString();
      System.out.printf("Invoice ID: %s, confidence: %.2f%n",
        invoiceId, invoiceIdField.getConfidence());
    }
  }

  DocumentField invoiceDateField = invoiceFields.get("InvoiceDate");
  if (customerNameField != null) {
    if (DocumentFieldType.DATE == invoiceDateField.getType()) {
      LocalDate invoiceDate = invoiceDateField.getValueAsDate();
      System.out.printf("Invoice Date: %s, confidence: %.2f%n",
        invoiceDate, invoiceDateField.getConfidence());
    }
  }

  DocumentField invoiceTotalField = invoiceFields.get("InvoiceTotal");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.DOUBLE == invoiceTotalField.getType()) {
      Double invoiceTotal = invoiceTotalField.getValueAsDouble();
      System.out.printf("Invoice Total: %.2f, confidence: %.2f%n",
        invoiceTotal, invoiceTotalField.getConfidence());
    }
  }

  DocumentField invoiceItemsField = invoiceFields.get("Items");
  if (invoiceItemsField != null) {
    System.out.printf("Invoice Items: %n");
    if (DocumentFieldType.LIST == invoiceItemsField.getType()) {
      List < DocumentField > invoiceItems = invoiceItemsField.getValueAsList();
      invoiceItems.stream()
        .filter(invoiceItem -> DocumentFieldType.MAP == invoiceItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Description".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Description: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("UnitPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double unitPrice = documentField.getValueAsDouble();
              System.out.printf("Unit Price: %f, confidence: %.2f%n",
                unitPrice, documentField.getConfidence());
            }
          }
          if ("ProductCode".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double productCode = documentField.getValueAsDouble();
              System.out.printf("Product Code: %f, confidence: %.2f%n",
                productCode, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看发票模型输出

使用收据模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

String receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";
String modelId = "prebuilt-receipt";

SyncPoller < OperationResult, AnalyzeResult > analyzeReceiptPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, receiptUrl);

AnalyzeResult receiptResults = analyzeReceiptPoller.getFinalResult();

for (int i = 0; i < receiptResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedReceipt = receiptResults.getDocuments().get(i);
  Map < String, DocumentField > receiptFields = analyzedReceipt.getFields();
  System.out.printf("----------- Analyzing receipt info %d -----------%n", i);
  DocumentField merchantNameField = receiptFields.get("MerchantName");
  if (merchantNameField != null) {
    if (DocumentFieldType.STRING == merchantNameField.getType()) {
      String merchantName = merchantNameField.getValueAsString();
      System.out.printf("Merchant Name: %s, confidence: %.2f%n",
        merchantName, merchantNameField.getConfidence());
    }
  }

  DocumentField merchantPhoneNumberField = receiptFields.get("MerchantPhoneNumber");
  if (merchantPhoneNumberField != null) {
    if (DocumentFieldType.PHONE_NUMBER == merchantPhoneNumberField.getType()) {
      String merchantAddress = merchantPhoneNumberField.getValueAsPhoneNumber();
      System.out.printf("Merchant Phone number: %s, confidence: %.2f%n",
        merchantAddress, merchantPhoneNumberField.getConfidence());
    }
  }

  DocumentField merchantAddressField = receiptFields.get("MerchantAddress");
  if (merchantAddressField != null) {
    if (DocumentFieldType.STRING == merchantAddressField.getType()) {
      String merchantAddress = merchantAddressField.getValueAsString();
      System.out.printf("Merchant Address: %s, confidence: %.2f%n",
        merchantAddress, merchantAddressField.getConfidence());
    }
  }

  DocumentField transactionDateField = receiptFields.get("TransactionDate");
  if (transactionDateField != null) {
    if (DocumentFieldType.DATE == transactionDateField.getType()) {
      LocalDate transactionDate = transactionDateField.getValueAsDate();
      System.out.printf("Transaction Date: %s, confidence: %.2f%n",
        transactionDate, transactionDateField.getConfidence());
    }
  }

  DocumentField receiptItemsField = receiptFields.get("Items");
  if (receiptItemsField != null) {
    System.out.printf("Receipt Items: %n");
    if (DocumentFieldType.LIST == receiptItemsField.getType()) {
      List < DocumentField > receiptItems = receiptItemsField.getValueAsList();
      receiptItems.stream()
        .filter(receiptItem -> DocumentFieldType.MAP == receiptItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Name".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Name: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("Price".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double price = documentField.getValueAsDouble();
              System.out.printf("Price: %f, confidence: %.2f%n",
                price, documentField.getConfidence());
            }
          }
          if ("TotalPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double totalPrice = documentField.getValueAsDouble();
              System.out.printf("Total Price: %f, confidence: %.2f%n",
                totalPrice, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看收据模型输出

使用 ID 文档模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String licenseUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png";
String modelId = "prebuilt-idDocument";

SyncPoller < OperationResult, AnalyzeResult > analyzeIdentityDocumentPoller = client.beginAnalyzeDocumentFromUrl(modelId, licenseUrl);

AnalyzeResult identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();

for (int i = 0; i < identityDocumentResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedIDDocument = identityDocumentResults.getDocuments().get(i);
  Map < String, DocumentField > licenseFields = analyzedIDDocument.getFields();
  System.out.printf("----------- Analyzed license info for page %d -----------%n", i);
  DocumentField addressField = licenseFields.get("Address");
  if (addressField != null) {
    if (DocumentFieldType.STRING == addressField.getType()) {
      String address = addressField.getValueAsString();
      System.out.printf("Address: %s, confidence: %.2f%n",
        address, addressField.getConfidence());
    }
  }

  DocumentField countryRegionDocumentField = licenseFields.get("CountryRegion");
  if (countryRegionDocumentField != null) {
    if (DocumentFieldType.STRING == countryRegionDocumentField.getType()) {
      String countryRegion = countryRegionDocumentField.getValueAsCountry();
      System.out.printf("Country or region: %s, confidence: %.2f%n",
        countryRegion, countryRegionDocumentField.getConfidence());
    }
  }

  DocumentField dateOfBirthField = licenseFields.get("DateOfBirth");
  if (dateOfBirthField != null) {
    if (DocumentFieldType.DATE == dateOfBirthField.getType()) {
      LocalDate dateOfBirth = dateOfBirthField.getValueAsDate();
      System.out.printf("Date of Birth: %s, confidence: %.2f%n",
        dateOfBirth, dateOfBirthField.getConfidence());
    }
  }

  DocumentField dateOfExpirationField = licenseFields.get("DateOfExpiration");
  if (dateOfExpirationField != null) {
    if (DocumentFieldType.DATE == dateOfExpirationField.getType()) {
      LocalDate expirationDate = dateOfExpirationField.getValueAsDate();
      System.out.printf("Document date of expiration: %s, confidence: %.2f%n",
        expirationDate, dateOfExpirationField.getConfidence());
    }
  }

  DocumentField documentNumberField = licenseFields.get("DocumentNumber");
  if (documentNumberField != null) {
    if (DocumentFieldType.STRING == documentNumberField.getType()) {
      String documentNumber = documentNumberField.getValueAsString();
      System.out.printf("Document number: %s, confidence: %.2f%n",
        documentNumber, documentNumberField.getConfidence());
    }
  }

  DocumentField firstNameField = licenseFields.get("FirstName");
  if (firstNameField != null) {
    if (DocumentFieldType.STRING == firstNameField.getType()) {
      String firstName = firstNameField.getValueAsString();
      System.out.printf("First Name: %s, confidence: %.2f%n",
        firstName, documentNumberField.getConfidence());
    }
  }

  DocumentField lastNameField = licenseFields.get("LastName");
  if (lastNameField != null) {
    if (DocumentFieldType.STRING == lastNameField.getType()) {
      String lastName = lastNameField.getValueAsString();
      System.out.printf("Last name: %s, confidence: %.2f%n",
        lastName, lastNameField.getConfidence());
    }
  }

  DocumentField regionField = licenseFields.get("Region");
  if (regionField != null) {
    if (DocumentFieldType.STRING == regionField.getType()) {
      String region = regionField.getValueAsString();
      System.out.printf("Region: %s, confidence: %.2f%n",
        region, regionField.getConfidence());
    }
  }
}
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看 ID 文档模型输出

使用名片模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String businessCardUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg";
String modelId = "prebuilt-businessCard";

SyncPoller < OperationResult, AnalyzeResult > analyzeBusinessCardPoller = client.beginAnalyzeDocumentFromUrl(modelId, businessCardUrl);

AnalyzeResult businessCardPageResults = analyzeBusinessCardPoller.getFinalResult();

for (int i = 0; i < businessCardPageResults.getDocuments().size(); i++) {
  System.out.printf("--------Analyzing business card %d -----------%n", i);
  AnalyzedDocument analyzedBusinessCard = businessCardPageResults.getDocuments().get(i);
  Map < String, DocumentField > businessCardFields = analyzedBusinessCard.getFields();
  DocumentField contactNamesDocumentField = businessCardFields.get("ContactNames");
  if (contactNamesDocumentField != null) {
    if (DocumentFieldType.LIST == contactNamesDocumentField.getType()) {
      List < DocumentField > contactNamesList = contactNamesDocumentField.getValueAsList();
      contactNamesList.stream()
        .filter(contactName -> DocumentFieldType.MAP == contactName.getType())
        .map(contactName -> {
          System.out.printf("Contact name: %s%n", contactName.getContent());
          return contactName.getValueAsMap();
        })
        .forEach(contactNamesMap -> contactNamesMap.forEach((key, contactName) -> {
          if ("FirstName".equals(key)) {
            if (DocumentFieldType.STRING == contactName.getType()) {
              String firstName = contactName.getValueAsString();
              System.out.printf("\tFirst Name: %s, confidence: %.2f%n",
                firstName, contactName.getConfidence());
            }
          }
          if ("LastName".equals(key)) {
            if (DocumentFieldType.STRING == contactName.getType()) {
              String lastName = contactName.getValueAsString();
              System.out.printf("\tLast Name: %s, confidence: %.2f%n",
                lastName, contactName.getConfidence());
            }
          }
        }));
    }
  }

  DocumentField jobTitles = businessCardFields.get("JobTitles");
  if (jobTitles != null) {
    if (DocumentFieldType.LIST == jobTitles.getType()) {
      List < DocumentField > jobTitlesItems = jobTitles.getValueAsList();
      jobTitlesItems.forEach(jobTitlesItem -> {
        if (DocumentFieldType.STRING == jobTitlesItem.getType()) {
          String jobTitle = jobTitlesItem.getValueAsString();
          System.out.printf("Job Title: %s, confidence: %.2f%n",
            jobTitle, jobTitlesItem.getConfidence());
        }
      });
    }
  }

  DocumentField departments = businessCardFields.get("Departments");
  if (departments != null) {
    if (DocumentFieldType.LIST == departments.getType()) {
      List < DocumentField > departmentsItems = departments.getValueAsList();
      departmentsItems.forEach(departmentsItem -> {
        if (DocumentFieldType.STRING == departmentsItem.getType()) {
          String department = departmentsItem.getValueAsString();
          System.out.printf("Department: %s, confidence: %.2f%n",
            department, departmentsItem.getConfidence());
        }
      });
    }
  }

  DocumentField emails = businessCardFields.get("Emails");
  if (emails != null) {
    if (DocumentFieldType.LIST == emails.getType()) {
      List < DocumentField > emailsItems = emails.getValueAsList();
      emailsItems.forEach(emailsItem -> {
        if (DocumentFieldType.STRING == emailsItem.getType()) {
          String email = emailsItem.getValueAsString();
          System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
        }
      });
    }
  }

  DocumentField websites = businessCardFields.get("Websites");
  if (websites != null) {
    if (DocumentFieldType.LIST == websites.getType()) {
      List < DocumentField > websitesItems = websites.getValueAsList();
      websitesItems.forEach(websitesItem -> {
        if (DocumentFieldType.STRING == websitesItem.getType()) {
          String website = websitesItem.getValueAsString();
          System.out.printf("Web site: %s, confidence: %.2f%n",
            website, websitesItem.getConfidence());
        }
      });
    }
  }

  DocumentField mobilePhones = businessCardFields.get("MobilePhones");
  if (mobilePhones != null) {
    if (DocumentFieldType.LIST == mobilePhones.getType()) {
      List < DocumentField > mobilePhonesItems = mobilePhones.getValueAsList();
      mobilePhonesItems.forEach(mobilePhonesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == mobilePhonesItem.getType()) {
          String mobilePhoneNumber = mobilePhonesItem.getValueAsPhoneNumber();
          System.out.printf("Mobile phone number: %s, confidence: %.2f%n",
            mobilePhoneNumber, mobilePhonesItem.getConfidence());
        }
      });
    }
  }

  DocumentField otherPhones = businessCardFields.get("OtherPhones");
  if (otherPhones != null) {
    if (DocumentFieldType.LIST == otherPhones.getType()) {
      List < DocumentField > otherPhonesItems = otherPhones.getValueAsList();
      otherPhonesItems.forEach(otherPhonesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == otherPhonesItem.getType()) {
          String otherPhoneNumber = otherPhonesItem.getValueAsPhoneNumber();
          System.out.printf("Other phone number: %s, confidence: %.2f%n",
            otherPhoneNumber, otherPhonesItem.getConfidence());
        }
      });
    }
  }

  DocumentField faxes = businessCardFields.get("Faxes");
  if (faxes != null) {
    if (DocumentFieldType.LIST == faxes.getType()) {
      List < DocumentField > faxesItems = faxes.getValueAsList();
      faxesItems.forEach(faxesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == faxesItem.getType()) {
          String faxPhoneNumber = faxesItem.getValueAsPhoneNumber();
          System.out.printf("Fax phone number: %s, confidence: %.2f%n",
            faxPhoneNumber, faxesItem.getConfidence());
        }
      });
    }
  }

  DocumentField addresses = businessCardFields.get("Addresses");
  if (addresses != null) {
    if (DocumentFieldType.LIST == addresses.getType()) {
      List < DocumentField > addressesItems = addresses.getValueAsList();
      addressesItems.forEach(addressesItem -> {
        if (DocumentFieldType.STRING == addressesItem.getType()) {
          String address = addressesItem.getValueAsString();
          System.out
            .printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
        }
      });
    }
  }

  DocumentField companyName = businessCardFields.get("CompanyNames");
  if (companyName != null) {
    if (DocumentFieldType.LIST == companyName.getType()) {
      List < DocumentField > companyNameItems = companyName.getValueAsList();
      companyNameItems.forEach(companyNameItem -> {
        if (DocumentFieldType.STRING == companyNameItem.getType()) {
          String companyNameValue = companyNameItem.getValueAsString();
          System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue,
            companyNameItem.getConfidence());
        }
      });
    }
  }
}
}
}

请访问 GitHub 上的 Azure 示例存储库,并查看名片模型输出

先决条件

  • Azure 订阅 - 创建试用订阅

  • 最新版本的 Visual Studio Code 或者你首选的 IDE。 有关详细信息,请参阅 Visual Studio Code 中的 Node.js

  • Node.js 的最新 LTS 版本。

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

    提示

    如果计划通过一个终结点和密钥访问多个 Azure AI 服务,请创建 Azure AI 服务资源。 请创建仅供文档智能访问的文档智能资源。 若要使用 Microsoft Entra 身份验证,则需要单服务资源。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • URL 中的文档文件。 对于本项目,可以使用下表中为每项功能提供的示例表单:

    功能 modelID document-url
    “读取”模型 prebuilt-read 示例手册
    布局模型 预生成布局 预订确认示例
    W-2 窗体模型 prebuilt-tax.us.w2 示例 W-2 表单
    发票模型 预生成的发票 示例发票
    收据模型 prebuilt-receipt 示例收据
    ID 文档模型 prebuilt-idDocument 示例身份证明文档
    名片模型 prebuilt-businessCard 名片示例

设置环境变量

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,请使用 Azure 门户中的 keyendpoint 实例化客户端。 对于此项目,使用环境变量来存储和访问凭据。

重要

如果使用 API 密钥,请将其安全地存储在某个其他位置,例如 Azure Key Vault 中。 请不要直接在代码中包含 API 密钥,并且切勿公开发布该密钥。

有关 Azure AI 服务安全性的详细信息,请参阅对 Azure AI 服务的请求进行身份验证

若要为文档智能资源密钥设置环境变量,请打开控制台窗口,按照操作系统和开发环境的说明进行操作。 将 <yourKey><yourEndpoint> 替换为 Azure 门户中资源的值。

环境变量不区分大小写。 它们通常以大写形式声明,其中包含的单词以下划线联接。 请根据命令提示符运行以下命令:

  1. 设置密钥变量:

    setx DI_KEY <yourKey>
    
  2. 设置终结点变量

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 设置环境变量后关闭命令提示符窗口。 这些值将一直保留,直到你再次更改它们。

  4. 重启任何读取环境变量的运行程序。 例如,如果正在使用 Visual Studio 或 Visual Studio Code 作为编辑器,请在运行示例代码之前重启它。

下面是其他一些可与环境变量一起使用的有用命令:

命令 操作 示例
setx VARIABLE_NAME= 通过将环境变量值设置为空字符串来删除环境变量。 setx DI_KEY=
setx VARIABLE_NAME=value 设置或更改环境变量的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 显示特定环境变量的值。 set DI_KEY
set 显示所有环境变量。 set

设置编程环境

创建 Node.js Express 应用程序。

  1. 在控制台窗口中,为名为“form-recognizer-app”的应用创建一个新目录,然后导航到该目录。

    mkdir form-recognizer-app
    cd form-recognizer-app
    
  2. 运行 npm init 命令以初始化应用程序并为项目构建基架。

    npm init
    
  3. 使用终端中提供的提示指定项目的属性。

    • 最重要的属性包括名称、版本号和入口点。
    • 建议保留 index.js 作为入口点名称。 描述、测试命令、GitHub 存储库、关键字、作者和许可证信息均为可选属性。 可在此项目中跳过它们。
    • 选择“Enter”以接受括号中的建议。

    完成提示后,命令会在 package.jsonform-recognizer-app 目录中创建一个 文件。

  4. 安装 ai-form-recognizer 客户端库和 azure/identity npm 包:

    npm i @azure/ai-form-recognizer @azure/identity
    

应用的 package.json 文件将随依赖项进行更新。

  1. 在应用程序目录中创建一个名为“index.js”的文件。

    提示

    可以使用 Powershell 创建新文件。 按住 Shift 键并右键单击文件夹,在项目目录中打开 PowerShell 窗口,然后输入以下命令:New-Item index.js

生成应用程序

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,你要通过 Azure 门户使用你的密钥创建一个 AzureKeyCredential,并使用 AzureKeyCredential 和文档智能终结点创建一个 DocumentAnalysisClient 实例。

在 Visual Studio Code 或你喜爱的 IDE 中打开 index.js 文件,选择以下代码示例之一,然后将其复制/粘贴到你的应用程序中:

  • 预生成读取模型是所有文档智能模型的核心,可以检测行、字词、位置和语言。 布局、常规文档、预生成和自定义模型都使用 read 模型作为从文档中提取文本的基础。
  • 预生成布局模型从文档和图像中提取文本和文本位置、表、选择标记和结构信息。
  • 预生成 tax.us.w2 模型提取美国国内税收署 (IRS) 纳税表单上报告的信息。
  • prebuilt-invoice 模型会提取美国国内税收署纳税表单上报告的信息。
  • 预生成收据模型提取印刷体和手写体销售收据中的关键信息。
  • 预生成 idDocument 模型从美国驾驶执照、国际护照个人资料页、美国各州身份证、社会保障卡和永久居民卡中提取关键信息。

使用“读取”模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const documentUrlRead = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

// helper function
function* getTextOfSpans(content, spans) {
    for (const span of spans) {
        yield content.slice(span.offset, span.offset + span.length);
    }
}

async function main() {
    // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));
    const poller = await client.beginAnalyzeDocument("prebuilt-read", documentUrlRead);

    const {
        content,
        pages,
        languages,
        styles
    } = await poller.pollUntilDone();

    if (pages.length <= 0) {
        console.log("No pages were extracted from the document.");
    } else {
        console.log("Pages:");
        for (const page of pages) {
            console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
            console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
            console.log(`  ${page.lines.length} lines, ${page.words.length} words`);

            if (page.lines.length > 0) {
                console.log("  Lines:");

                for (const line of page.lines) {
                    console.log(`  - "${line.content}"`);

                    // The words of the line can also be iterated independently. The words are computed based on their
                    // corresponding spans.
                    for (const word of line.words()) {
                        console.log(`    - "${word.content}"`);
                    }
                }
            }
        }
    }

    if (languages.length <= 0) {
        console.log("No language spans were extracted from the document.");
    } else {
        console.log("Languages:");
        for (const languageEntry of languages) {
            console.log(
                `- Found language: ${languageEntry.languageCode} (confidence: ${languageEntry.confidence})`
            );
            for (const text of getTextOfSpans(content, languageEntry.spans)) {
                const escapedText = text.replace(/\r?\n/g, "\\n").replace(/"/g, '\\"');
                console.log(`  - "${escapedText}"`);
            }
        }
    }

    if (styles.length <= 0) {
        console.log("No text styles were extracted from the document.");
    } else {
        console.log("Styles:");
        for (const style of styles) {
            console.log(
                `- Handwritten: ${style.isHandwritten ? "yes" : "no"} (confidence=${style.confidence})`
            );

            for (const word of getTextOfSpans(content, style.spans)) {
                console.log(`  - "${word}"`);
            }
        }
    }
}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看 read 模型输出

使用布局模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const layoutUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocumentFromUrl(
      "prebuilt-layout", layoutUrl);

    // Layout extraction produces basic elements such as pages, words, lines, etc. as well as information about the
    // appearance (styles) of textual elements.
    const { pages, tables } = await poller.pollUntilDone();

    if (!pages || pages.length <= 0) {
      console.log("No pages were extracted from the document.");
    } else {
      console.log("Pages:");
      for (const page of pages) {
        console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
        console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
        console.log(
          `  ${page.lines && page.lines.length} lines, ${page.words && page.words.length} words`
        );

        if (page.lines && page.lines.length > 0) {
          console.log("  Lines:");

          for (const line of page.lines) {
            console.log(`  - "${line.content}"`);

            // The words of the line can also be iterated independently. The words are computed based on their
            // corresponding spans.
            for (const word of line.words()) {
              console.log(`    - "${word.content}"`);
            }
          }
        }
      }
    }

    if (!tables || tables.length <= 0) {
      console.log("No tables were extracted from the document.");
    } else {
      console.log("Tables:");
      for (const table of tables) {
        console.log(
          `- Extracted table: ${table.columnCount} columns, ${table.rowCount} rows (${table.cells.length} cells)`
        );
      }
    }
  }

  main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
  });

请访问 GitHub 上的 Azure 示例存储库,并查看布局模型输出

使用“常规文档”模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocumentFromUrl("prebuilt-document", documentUrl);

    const {
        keyValuePairs
    } = await poller.pollUntilDone();

    if (!keyValuePairs || keyValuePairs.length <= 0) {
        console.log("No key-value pairs were extracted from the document.");
    } else {
        console.log("Key-Value Pairs:");
        for (const {
                key,
                value,
                confidence
            } of keyValuePairs) {
            console.log("- Key  :", `"${key.content}"`);
            console.log("  Value:", `"${(value && value.content) || "<undefined>"}" (${confidence})`);
        }
    }

}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看常规文档模型输出

使用 W-2 税务模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

const w2DocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

async function main() {
 const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-tax.us.w2", w2DocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
    const { Employee, Employer, ControlNumber, TaxYear, AdditionalInfo } = result.fields;

    if (Employee) {
      const { Name, Address, SocialSecurityNumber } = Employee.properties;
      console.log("Employee:");
      console.log("  Name:", Name && Name.content);
      console.log("  SSN/TIN:", SocialSecurityNumber && SocialSecurityNumber.content);
      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employee information extracted.");
    }

    if (Employer) {
      const { Name, Address, IdNumber } = Employer.properties;
      console.log("Employer:");
      console.log("  Name:", Name && Name.content);
      console.log("  ID (EIN):", IdNumber && IdNumber.content);

      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employer information extracted.");
    }

    console.log("Control Number:", ControlNumber && ControlNumber.content);
    console.log("Tax Year:", TaxYear && TaxYear.content);

    if (AdditionalInfo) {
      console.log("Additional Info:");

      for (const info of AdditionalInfo.values) {
        const { LetterCode, Amount } = info.properties;
        console.log(`- ${LetterCode && LetterCode.content}: ${Amount && Amount.content}`);
      }
    }
  } else {
    throw new Error("Expected at least one document in the result.");
  }
}

main().catch((error) => {
  console.error(error);
  process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看 W-2 税务模型输出

使用发票模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample url
const invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";

async function main() {

  const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

  const poller = await client.beginAnalyzeDocument("prebuilt-invoice", invoiceUrl);

  const {
      documents: [result]
  } = await poller.pollUntilDone();

  if (result) {
      const invoice = result.fields;

      console.log("Vendor Name:", invoice.VendorName?.content);
      console.log("Customer Name:", invoice.CustomerName?.content);
      console.log("Invoice Date:", invoice.InvoiceDate?.content);
      console.log("Due Date:", invoice.DueDate?.content);

      console.log("Items:");
      for (const {
              properties: item
          } of invoice.Items?.values ?? []) {
          console.log("-", item.ProductCode?.content ?? "<no product code>");
          console.log("  Description:", item.Description?.content);
          console.log("  Quantity:", item.Quantity?.content);
          console.log("  Date:", item.Date?.content);
          console.log("  Unit:", item.Unit?.content);
          console.log("  Unit Price:", item.UnitPrice?.content);
          console.log("  Tax:", item.Tax?.content);
          console.log("  Amount:", item.Amount?.content);
      }

      console.log("Subtotal:", invoice.SubTotal?.content);
      console.log("Previous Unpaid Balance:", invoice.PreviousUnpaidBalance?.content);
      console.log("Tax:", invoice.TotalTax?.content);
      console.log("Amount Due:", invoice.AmountDue?.content);
  } else {
      throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看发票模型输出

使用收据模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample url
const receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";

async function main() {

    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-receipt", receiptUrl);

    const {
        documents: [result]
    } = await poller.pollUntilDone();

    if (result) {
        const {
            MerchantName,
            Items,
            Total
        } = result.fields;

        console.log("=== Receipt Information ===");
        console.log("Type:", result.docType);
        console.log("Merchant:", MerchantName && MerchantName.content);

        console.log("Items:");
        for (const item of (Items && Items.values) || []) {
            const {
                Description,
                TotalPrice
            } = item.properties;

            console.log("- Description:", Description && Description.content);
            console.log("  Total Price:", TotalPrice && TotalPrice.content);
        }

        console.log("Total:", Total && Total.content);
    } else {
        throw new Error("Expected at least one receipt in the result.");
    }

}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

请访问 GitHub 上的 Azure 示例存储库,并查看收据模型输出

使用 ID 文档模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const idDocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

async function main() {
 const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-idDocument", idDocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
// The identity document model has multiple document types, so we need to know which document type was actually
    extracted.
    if (result.docType === "idDocument.driverLicense") {
      const { FirstName, LastName, DocumentNumber, DateOfBirth, DateOfExpiration, Height, Weight, EyeColor, Endorsements, Restrictions, VehicleClassifications} = result.fields;

// For the sake of the example, we'll only show a few of the fields that are produced.
      console.log("Extracted a Driver License:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  License No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Expiration:", DateOfExpiration && DateOfExpiration.content);
      console.log("  Height:", Height && Height.content);
      console.log("  Weight:", Weight && Weight.content);
      console.log("  Eye color:", EyeColor && EyeColor.content);
      console.log("  Restrictions:", Restrictions && Restrictions.content);
      console.log("  Endorsements:", Endorsements && Endorsements.content);
      console.log("  Class:", VehicleClassifications && VehicleClassifications.content);
    } else if (result.docType === "idDocument.passport") {
// The passport document type extracts and parses the Passport's machine-readable zone
      if (!result.fields.machineReadableZone) {
        throw new Error("No Machine Readable Zone extracted from passport.");
      }

      const {
        FirstName,
        LastName,
        DateOfBirth,
        Nationality,
        DocumentNumber,
        CountryRegion,
        DateOfExpiration,
      } = result.fields.machineReadableZone.properties;

      console.log("Extracted a Passport:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Nationality:", Nationality && natiNationalityonality.content);
      console.log("  Passport No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Issuer:", CountryRegion && CountryRegion.content);
      console.log("  Expiration Date:", DateOfExpiration && DateOfExpiration.content);
    } else {
// The only reason this would happen is if the client library's schema for the prebuilt identity document model is
      out of date, and a new document type has been introduced.
      console.error("Unknown document type in result:", result);
    }
  } else {
    throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看 ID 文档模型输出

使用名片模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const businessCardURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-businessCard", businessCardURL);

    const {
        documents: [result]
    } = await poller.pollUntilDone();

    if (result) {
        const businessCard = result.fields;
        console.log("=== Business Card Information ===");

        // There are more fields than just these few, and the model allows for multiple contact & company names as well as
        // phone numbers, though we'll only show the first extracted values here.
        const name = businessCard.ContactNames && businessCard.ContactNames.values[0];
        if (name) {
            const {
                FirstName,
                LastName
            } = name.properties;
            console.log("Name:", FirstName && FirstName.content, LastName && LastName.content);
        }

        const company = businessCard.CompanyNames && businessCard.CompanyNames.values[0];
        if (company) {
            console.log("Company:", company.content);
        }

        const address = businessCard.Addresses && businessCard.Addresses.values[0];
        if (address) {
            console.log("Address:", address.content);
        }
        const jobTitle = businessCard.JobTitles && businessCard.JobTitles.values[0];
        if (jobTitle) {
            console.log("Job title:", jobTitle.content);
        }
        const department = businessCard.Departments && businessCard.Departments.values[0];
        if (department) {
            console.log("Department:", department.content);
        }
        const email = businessCard.Emails && businessCard.Emails.values[0];
        if (email) {
            console.log("Email:", email.content);
        }
        const workPhone = businessCard.WorkPhones && businessCard.WorkPhones.values[0];
        if (workPhone) {
            console.log("Work phone:", workPhone.content);
        }
        const website = businessCard.Websites && businessCard.Websites.values[0];
        if (website) {
            console.log("Website:", website.content);
        }
    } else {
        throw new Error("Expected at least one business card in the result.");
    }
}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

请访问 GitHub 上的 Azure 示例存储库,并查看名片模型输出

先决条件

  • Azure 订阅 - 创建试用订阅

  • Python 3.7 或更高版本。 你的 Python 安装应包含 pip。 可以通过在命令行上运行 pip --version 来检查是否安装了 pip。 通过安装最新版本的 Python 获取 pip。

  • 最新版本的 Visual Studio Code 或者你首选的 IDE。 请参阅 Visual Studio Code 中的 Python 使用入门

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • URL 中的文档文件。 对于本项目,可以使用下表中为每项功能提供的示例表单:

    功能 modelID document-url
    “读取”模型 prebuilt-read 示例手册
    布局模型 预生成布局 预订确认示例
    W-2 窗体模型 prebuilt-tax.us.w2 示例 W-2 表单
    发票模型 预生成的发票 示例发票
    收据模型 prebuilt-receipt 示例收据
    ID 文档模型 prebuilt-idDocument 示例身份证明文档
    名片模型 prebuilt-businessCard 名片示例

设置环境变量

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,请使用 Azure 门户中的 keyendpoint 实例化客户端。 对于此项目,使用环境变量来存储和访问凭据。

重要

如果使用 API 密钥,请将其安全地存储在某个其他位置,例如 Azure Key Vault 中。 请不要直接在代码中包含 API 密钥,并且切勿公开发布该密钥。

有关 Azure AI 服务安全性的详细信息,请参阅对 Azure AI 服务的请求进行身份验证

若要为文档智能资源密钥设置环境变量,请打开控制台窗口,按照操作系统和开发环境的说明进行操作。 将 <yourKey><yourEndpoint> 替换为 Azure 门户中资源的值。

环境变量不区分大小写。 它们通常以大写形式声明,其中包含的单词以下划线联接。 请根据命令提示符运行以下命令:

  1. 设置密钥变量:

    setx DI_KEY <yourKey>
    
  2. 设置终结点变量

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 设置环境变量后关闭命令提示符窗口。 这些值将一直保留,直到你再次更改它们。

  4. 重启任何读取环境变量的运行程序。 例如,如果正在使用 Visual Studio 或 Visual Studio Code 作为编辑器,请在运行示例代码之前重启它。

下面是其他一些可与环境变量一起使用的有用命令:

命令 操作 示例
setx VARIABLE_NAME= 通过将环境变量值设置为空字符串来删除环境变量。 setx DI_KEY=
setx VARIABLE_NAME=value 设置或更改环境变量的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 显示特定环境变量的值。 set DI_KEY
set 显示所有环境变量。 set

设置编程环境

在本地环境中打开一个控制台窗口,并使用 pip 安装适用于 Python 的 Azure AI 文档智能客户端库:

pip install azure-ai-formrecognizer==3.2.0

创建 Python 应用程序

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,你要通过 Azure 门户使用你的密钥创建一个 AzureKeyCredential,并使用 AzureKeyCredential 和文档智能终结点创建一个 DocumentAnalysisClient 实例。

  1. 在编辑器或 IDE 中创建一个名为 form_recognizer_quickstart.py 的新 Python 文件。

  2. 打开 form_recognizer_quickstart.py 文件,选择以下代码示例之一,然后将其复制/粘贴到你的应用程序中:

    • 预生成读取模型是所有文档智能模型的核心,可以检测行、字词、位置和语言。 布局、常规文档、预生成和自定义模型都使用 read 模型作为从文档中提取文本的基础。
    • 预生成布局模型从文档和图像中提取文本和文本位置、表、选择标记和结构信息。
    • 预生成 tax.us.w2 模型提取美国国内税收署 (IRS) 纳税表单上报告的信息。
    • 预生成发票模型会从各种格式和质量的销售发票中提取关键字段和行项。
    • 预生成收据模型提取印刷体和手写体销售收据中的关键信息。
    • 预生成 idDocument 模型从美国驾驶执照、国际护照个人资料页、美国各州身份证、社会保障卡和永久居民卡中提取关键信息。
  3. 从命令提示符运行 Python 代码。

    python form_recognizer_quickstart.py
    

使用“读取”模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_read():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-read", formUrl
    )
    result = poller.result()

    print("Document contains content: ", result.content)

    for idx, style in enumerate(result.styles):
        print(
            "Document contains {} content".format(
                "handwritten" if style.is_handwritten else "no handwritten"
            )
        )

    for page in result.pages:
        print("----Analyzing Read from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            print(
                "...Line # {} has text content '{}' within bounding box '{}'".format(
                    line_idx,
                    line.content,
                    format_polygon(line.polygon),
                )
            )

        for word in page.words:
            print(
                "...Word '{}' has a confidence of {}".format(
                    word.content, word.confidence
                )
            )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_read()

请访问 GitHub 上的 Azure 示例存储库,并查看 read 模型输出

使用布局模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_layout():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-layout", formUrl
    )
    result = poller.result()

    for idx, style in enumerate(result.styles):
        print(
            "Document contains {} content".format(
                "handwritten" if style.is_handwritten else "no handwritten"
            )
        )

    for page in result.pages:
        print("----Analyzing layout from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            words = line.get_words()
            print(
                "...Line # {} has word count {} and text '{}' within bounding box '{}'".format(
                    line_idx,
                    len(words),
                    line.content,
                    format_polygon(line.polygon),
                )
            )

            for word in words:
                print(
                    "......Word '{}' has a confidence of {}".format(
                        word.content, word.confidence
                    )
                )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding box '{}'".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_layout()

请访问 GitHub 上的 Azure 示例存储库,并查看布局模型输出

使用“常规文档”模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_general_documents():
    # sample document
    docUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf"

    # create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
    document_analysis_client = DocumentAnalysisClient(endpoint=endpoint, credential=AzureKeyCredential(key))

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-document", docUrl)
    result = poller.result()

    for style in result.styles:
        if style.is_handwritten:
            print("Document contains handwritten content: ")
            print(",".join([result.content[span.offset:span.offset + span.length] for span in style.spans]))

    print("----Key-value pairs found in document----")
    for kv_pair in result.key_value_pairs:
        if kv_pair.key:
            print(
                    "Key '{}' found within '{}' bounding regions".format(
                        kv_pair.key.content,
                        format_bounding_region(kv_pair.key.bounding_regions),
                    )
                )
        if kv_pair.value:
            print(
                    "Value '{}' found within '{}' bounding regions\n".format(
                        kv_pair.value.content,
                        format_bounding_region(kv_pair.value.bounding_regions),
                    )
                )

    for page in result.pages:
        print("----Analyzing document from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            print(
                "...Line # {} has text content '{}' within bounding box '{}'".format(
                    line_idx,
                    line.content,
                    format_polygon(line.polygon),
                )
            )

        for word in page.words:
            print(
                "...Word '{}' has a confidence of {}".format(
                    word.content, word.confidence
                )
            )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding box '{}'\n".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )
    print("----------------------------------------")


if __name__ == "__main__":
    analyze_general_documents()

请访问 GitHub 上的 Azure 示例存储库,并查看常规文档模型输出

使用 W-2 税务模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_address_value(address_value):
    return f"\n......House/building number: {address_value.house_number}\n......Road: {address_value.road}\n......City: {address_value.city}\n......State: {address_value.state}\n......Postal code: {address_value.postal_code}"


def analyze_tax_us_w2():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-tax.us.w2", formUrl
    )
    w2s = poller.result()

    for idx, w2 in enumerate(w2s.documents):
         print("--------Analyzing US Tax W-2 Form #{}--------".format(idx   1))
        form_variant = w2.fields.get("W2FormVariant")
        if form_variant:
            print(
                "Form variant: {} has confidence: {}".format(
                    form_variant.value, form_variant.confidence
                )
            )
        tax_year = w2.fields.get("TaxYear")
        if tax_year:
            print(
                "Tax year: {} has confidence: {}".format(
                    tax_year.value, tax_year.confidence
                )
            )
        w2_copy = w2.fields.get("W2Copy")
        if w2_copy:
            print(
                "W-2 Copy: {} has confidence: {}".format(
                    w2_copy.value,
                    w2_copy.confidence,
                )
            )
        employee = w2.fields.get("Employee")
        if employee:
            print("Employee data:")
            employee_name = employee.value.get("Name")
            if employee_name:
                print(
                    "...Name: {} has confidence: {}".format(
                        employee_name.value, employee_name.confidence
                    )
                )
            employee_ssn = employee.value.get("SocialSecurityNumber")
            if employee_ssn:
                print(
                    "...SSN: {} has confidence: {}".format(
                        employee_ssn.value, employee_ssn.confidence
                    )
                )
            employee_address = employee.value.get("Address")
            if employee_address:
                print(
                    "...Address: {}\n......has confidence: {}".format(
                        format_address_value(employee_address.value),
                        employee_address.confidence,
                    )
                )
            employee_zipcode = employee.value.get("ZipCode")
            if employee_zipcode:
                print(
                    "...Zipcode: {} has confidence: {}".format(
                        employee_zipcode.value, employee_zipcode.confidence
                    )
                )
        control_number = w2.fields.get("ControlNumber")
        if control_number:
            print(
                "Control Number: {} has confidence: {}".format(
                    control_number.value, control_number.confidence
                )
            )
        employer = w2.fields.get("Employer")
        if employer:
            print("Employer data:")
            employer_name = employer.value.get("Name")
            if employer_name:
                print(
                    "...Name: {} has confidence: {}".format(
                        employer_name.value, employer_name.confidence
                    )
                )
            employer_id = employer.value.get("IdNumber")
            if employer_id:
                print(
                    "...ID Number: {} has confidence: {}".format(
                        employer_id.value, employer_id.confidence
                    )
                )
            employer_address = employer.value.get("Address")
            if employer_address:
                print(
                    "...Address: {}\n......has confidence: {}".format(
                        format_address_value(employer_address.value),
                        employer_address.confidence,
                    )
                )
            employer_zipcode = employer.value.get("ZipCode")
            if employer_zipcode:
                print(
                    "...Zipcode: {} has confidence: {}".format(
                        employer_zipcode.value, employer_zipcode.confidence
                    )
                )
        wages_tips = w2.fields.get("WagesTipsAndOtherCompensation")
        if wages_tips:
            print(
                "Wages, tips, and other compensation: {} has confidence: {}".format(
                    wages_tips.value,
                    wages_tips.confidence,
                )
            )
        fed_income_tax_withheld = w2.fields.get("FederalIncomeTaxWithheld")
        if fed_income_tax_withheld:
            print(
                "Federal income tax withheld: {} has confidence: {}".format(
                    fed_income_tax_withheld.value, fed_income_tax_withheld.confidence
                )
            )
        social_security_wages = w2.fields.get("SocialSecurityWages")
        if social_security_wages:
            print(
                "Social Security wages: {} has confidence: {}".format(
                    social_security_wages.value, social_security_wages.confidence
                )
            )
        social_security_tax_withheld = w2.fields.get("SocialSecurityTaxWithheld")
        if social_security_tax_withheld:
            print(
                "Social Security tax withheld: {} has confidence: {}".format(
                    social_security_tax_withheld.value,
                    social_security_tax_withheld.confidence,
                )
            )
        medicare_wages_tips = w2.fields.get("MedicareWagesAndTips")
        if medicare_wages_tips:
            print(
                "Medicare wages and tips: {} has confidence: {}".format(
                    medicare_wages_tips.value, medicare_wages_tips.confidence
                )
            )
        medicare_tax_withheld = w2.fields.get("MedicareTaxWithheld")
        if medicare_tax_withheld:
            print(
                "Medicare tax withheld: {} has confidence: {}".format(
                    medicare_tax_withheld.value, medicare_tax_withheld.confidence
                )
            )
        social_security_tips = w2.fields.get("SocialSecurityTips")
        if social_security_tips:
            print(
                "Social Security tips: {} has confidence: {}".format(
                    social_security_tips.value, social_security_tips.confidence
                )
            )
        allocated_tips = w2.fields.get("AllocatedTips")
        if allocated_tips:
            print(
                "Allocated tips: {} has confidence: {}".format(
                    allocated_tips.value,
                    allocated_tips.confidence,
                )
            )
        verification_code = w2.fields.get("VerificationCode")
        if verification_code:
            print(
                "Verification code: {} has confidence: {}".format(
                    verification_code.value, verification_code.confidence
                )
            )
        dependent_care_benefits = w2.fields.get("DependentCareBenefits")
        if dependent_care_benefits:
            print(
                "Dependent care benefits: {} has confidence: {}".format(
                    dependent_care_benefits.value,
                    dependent_care_benefits.confidence,
                )
            )
        non_qualified_plans = w2.fields.get("NonQualifiedPlans")
        if non_qualified_plans:
            print(
                "Non-qualified plans: {} has confidence: {}".format(
                    non_qualified_plans.value,
                    non_qualified_plans.confidence,
                )
            )
        additional_info = w2.fields.get("AdditionalInfo")
        if additional_info:
            print("Additional information:")
            for item in additional_info.value:
                letter_code = item.value.get("LetterCode")
                if letter_code:
                    print(
                        "...Letter code: {} has confidence: {}".format(
                            letter_code.value, letter_code.confidence
                        )
                    )
                amount = item.value.get("Amount")
                if amount:
                    print(
                        "...Amount: {} has confidence: {}".format(
                            amount.value, amount.confidence
                        )
                    )
        is_statutory_employee = w2.fields.get("IsStatutoryEmployee")
        if is_statutory_employee:
            print(
                "Is statutory employee: {} has confidence: {}".format(
                    is_statutory_employee.value, is_statutory_employee.confidence
                )
            )
        is_retirement_plan = w2.fields.get("IsRetirementPlan")
        if is_retirement_plan:
            print(
                "Is retirement plan: {} has confidence: {}".format(
                    is_retirement_plan.value, is_retirement_plan.confidence
                )
            )
        third_party_sick_pay = w2.fields.get("IsThirdPartySickPay")
        if third_party_sick_pay:
            print(
                "Is third party sick pay: {} has confidence: {}".format(
                    third_party_sick_pay.value, third_party_sick_pay.confidence
                )
            )
        other_info = w2.fields.get("Other")
        if other_info:
            print(
                "Other information: {} has confidence: {}".format(
                    other_info.value,
                    other_info.confidence,
                )
            )
        state_tax_info = w2.fields.get("StateTaxInfos")
        if state_tax_info:
            print("State Tax info:")
            for tax in state_tax_info.value:
                state = tax.value.get("State")
                if state:
                    print(
                        "...State: {} has confidence: {}".format(
                            state.value, state.confidence
                        )
                    )
                employer_state_id_number = tax.value.get("EmployerStateIdNumber")
                if employer_state_id_number:
                    print(
                        "...Employer state ID number: {} has confidence: {}".format(
                            employer_state_id_number.value,
                            employer_state_id_number.confidence,
                        )
                    )
                state_wages_tips = tax.value.get("StateWagesTipsEtc")
                if state_wages_tips:
                    print(
                        "...State wages, tips, etc: {} has confidence: {}".format(
                            state_wages_tips.value, state_wages_tips.confidence
                        )
                    )
                state_income_tax = tax.value.get("StateIncomeTax")
                if state_income_tax:
                    print(
                        "...State income tax: {} has confidence: {}".format(
                            state_income_tax.value, state_income_tax.confidence
                        )
                    )
        local_tax_info = w2.fields.get("LocalTaxInfos")
        if local_tax_info:
            print("Local Tax info:")
            for tax in local_tax_info.value:
                local_wages_tips = tax.value.get("LocalWagesTipsEtc")
                if local_wages_tips:
                    print(
                        "...Local wages, tips, etc: {} has confidence: {}".format(
                            local_wages_tips.value, local_wages_tips.confidence
                        )
                    )
                local_income_tax = tax.value.get("LocalIncomeTax")
                if local_income_tax:
                    print(
                        "...Local income tax: {} has confidence: {}".format(
                            local_income_tax.value, local_income_tax.confidence
                        )
                    )
                locality_name = tax.value.get("LocalityName")
                if locality_name:
                    print(
                        "...Locality name: {} has confidence: {}".format(
                            locality_name.value, locality_name.confidence
                        )
                    )

                print("----------------------------------------")


if __name__ == "__main__":
    analyze_tax_us_w2()

请访问 GitHub 上的 Azure 示例存储库,并查看 W-2 税务模型输出

使用发票模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_invoice():

    invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-invoice.pdf"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-invoice", invoiceUrl)
    invoices = poller.result()

    for idx, invoice in enumerate(invoices.documents):
        print("--------Recognizing invoice #{}--------".format(idx + 1))
        vendor_name = invoice.fields.get("VendorName")
        if vendor_name:
            print(
                "Vendor Name: {} has confidence: {}".format(
                    vendor_name.value, vendor_name.confidence
                )
            )
        vendor_address = invoice.fields.get("VendorAddress")
        if vendor_address:
            print(
                "Vendor Address: {} has confidence: {}".format(
                    vendor_address.value, vendor_address.confidence
                )
            )
        vendor_address_recipient = invoice.fields.get("VendorAddressRecipient")
        if vendor_address_recipient:
            print(
                "Vendor Address Recipient: {} has confidence: {}".format(
                    vendor_address_recipient.value, vendor_address_recipient.confidence
                )
            )
        customer_name = invoice.fields.get("CustomerName")
        if customer_name:
            print(
                "Customer Name: {} has confidence: {}".format(
                    customer_name.value, customer_name.confidence
                )
            )
        customer_id = invoice.fields.get("CustomerId")
        if customer_id:
            print(
                "Customer Id: {} has confidence: {}".format(
                    customer_id.value, customer_id.confidence
                )
            )
        customer_address = invoice.fields.get("CustomerAddress")
        if customer_address:
            print(
                "Customer Address: {} has confidence: {}".format(
                    customer_address.value, customer_address.confidence
                )
            )
        customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
        if customer_address_recipient:
            print(
                "Customer Address Recipient: {} has confidence: {}".format(
                    customer_address_recipient.value,
                    customer_address_recipient.confidence,
                )
            )
        invoice_id = invoice.fields.get("InvoiceId")
        if invoice_id:
            print(
                "Invoice Id: {} has confidence: {}".format(
                    invoice_id.value, invoice_id.confidence
                )
            )
        invoice_date = invoice.fields.get("InvoiceDate")
        if invoice_date:
            print(
                "Invoice Date: {} has confidence: {}".format(
                    invoice_date.value, invoice_date.confidence
                )
            )
        invoice_total = invoice.fields.get("InvoiceTotal")
        if invoice_total:
            print(
                "Invoice Total: {} has confidence: {}".format(
                    invoice_total.value, invoice_total.confidence
                )
            )
        due_date = invoice.fields.get("DueDate")
        if due_date:
            print(
                "Due Date: {} has confidence: {}".format(
                    due_date.value, due_date.confidence
                )
            )
        purchase_order = invoice.fields.get("PurchaseOrder")
        if purchase_order:
            print(
                "Purchase Order: {} has confidence: {}".format(
                    purchase_order.value, purchase_order.confidence
                )
            )
        billing_address = invoice.fields.get("BillingAddress")
        if billing_address:
            print(
                "Billing Address: {} has confidence: {}".format(
                    billing_address.value, billing_address.confidence
                )
            )
        billing_address_recipient = invoice.fields.get("BillingAddressRecipient")
        if billing_address_recipient:
            print(
                "Billing Address Recipient: {} has confidence: {}".format(
                    billing_address_recipient.value,
                    billing_address_recipient.confidence,
                )
            )
        shipping_address = invoice.fields.get("ShippingAddress")
        if shipping_address:
            print(
                "Shipping Address: {} has confidence: {}".format(
                    shipping_address.value, shipping_address.confidence
                )
            )
        shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient")
        if shipping_address_recipient:
            print(
                "Shipping Address Recipient: {} has confidence: {}".format(
                    shipping_address_recipient.value,
                    shipping_address_recipient.confidence,
                )
            )
        print("Invoice items:")
        for idx, item in enumerate(invoice.fields.get("Items").value):
            print("...Item #{}".format(idx + 1))
            item_description = item.value.get("Description")
            if item_description:
                print(
                    "......Description: {} has confidence: {}".format(
                        item_description.value, item_description.confidence
                    )
                )
            item_quantity = item.value.get("Quantity")
            if item_quantity:
                print(
                    "......Quantity: {} has confidence: {}".format(
                        item_quantity.value, item_quantity.confidence
                    )
                )
            unit = item.value.get("Unit")
            if unit:
                print(
                    "......Unit: {} has confidence: {}".format(
                        unit.value, unit.confidence
                    )
                )
            unit_price = item.value.get("UnitPrice")
            if unit_price:
                print(
                    "......Unit Price: {} has confidence: {}".format(
                        unit_price.value, unit_price.confidence
                    )
                )
            product_code = item.value.get("ProductCode")
            if product_code:
                print(
                    "......Product Code: {} has confidence: {}".format(
                        product_code.value, product_code.confidence
                    )
                )
            item_date = item.value.get("Date")
            if item_date:
                print(
                    "......Date: {} has confidence: {}".format(
                        item_date.value, item_date.confidence
                    )
                )
            tax = item.value.get("Tax")
            if tax:
                print(
                    "......Tax: {} has confidence: {}".format(tax.value, tax.confidence)
                )
            amount = item.value.get("Amount")
            if amount:
                print(
                    "......Amount: {} has confidence: {}".format(
                        amount.value, amount.confidence
                    )
                )
        subtotal = invoice.fields.get("SubTotal")
        if subtotal:
            print(
                "Subtotal: {} has confidence: {}".format(
                    subtotal.value, subtotal.confidence
                )
            )
        total_tax = invoice.fields.get("TotalTax")
        if total_tax:
            print(
                "Total Tax: {} has confidence: {}".format(
                    total_tax.value, total_tax.confidence
                )
            )
        previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance")
        if previous_unpaid_balance:
            print(
                "Previous Unpaid Balance: {} has confidence: {}".format(
                    previous_unpaid_balance.value, previous_unpaid_balance.confidence
                )
            )
        amount_due = invoice.fields.get("AmountDue")
        if amount_due:
            print(
                "Amount Due: {} has confidence: {}".format(
                    amount_due.value, amount_due.confidence
                )
            )
        service_start_date = invoice.fields.get("ServiceStartDate")
        if service_start_date:
            print(
                "Service Start Date: {} has confidence: {}".format(
                    service_start_date.value, service_start_date.confidence
                )
            )
        service_end_date = invoice.fields.get("ServiceEndDate")
        if service_end_date:
            print(
                "Service End Date: {} has confidence: {}".format(
                    service_end_date.value, service_end_date.confidence
                )
            )
        service_address = invoice.fields.get("ServiceAddress")
        if service_address:
            print(
                "Service Address: {} has confidence: {}".format(
                    service_address.value, service_address.confidence
                )
            )
        service_address_recipient = invoice.fields.get("ServiceAddressRecipient")
        if service_address_recipient:
            print(
                "Service Address Recipient: {} has confidence: {}".format(
                    service_address_recipient.value,
                    service_address_recipient.confidence,
                )
            )
        remittance_address = invoice.fields.get("RemittanceAddress")
        if remittance_address:
            print(
                "Remittance Address: {} has confidence: {}".format(
                    remittance_address.value, remittance_address.confidence
                )
            )
        remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient")
        if remittance_address_recipient:
            print(
                "Remittance Address Recipient: {} has confidence: {}".format(
                    remittance_address_recipient.value,
                    remittance_address_recipient.confidence,
                )
            )

        print("----------------------------------------")

if __name__ == "__main__":
    analyze_invoice()

请访问 GitHub 上的 Azure 示例存储库,并查看发票模型输出

使用收据模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_receipts():
    # sample document
    receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-receipt", receiptUrl, locale="en-US"
    )
    receipts = poller.result()
    for idx, receipt in enumerate(receipts.documents):
         print("--------Analysis of receipt #{}--------".format(idx   1))
        print("Receipt type: {}".format(receipt.doc_type or "N/A"))
        merchant_name = receipt.fields.get("MerchantName")
        if merchant_name:
            print(
                "Merchant Name: {} has confidence: {}".format(
                    merchant_name.value, merchant_name.confidence
                )
            )
        transaction_date = receipt.fields.get("TransactionDate")
        if transaction_date:
            print(
                "Transaction Date: {} has confidence: {}".format(
                    transaction_date.value, transaction_date.confidence
                )
            )
        if receipt.fields.get("Items"):
            print("Receipt items:")
            for idx, item in enumerate(receipt.fields.get("Items").value):
                 print("...Item #{}".format(idx   1))
                item_description = item.value.get("Description")
                if item_description:
                    print(
                        "......Item Description: {} has confidence: {}".format(
                            item_description.value, item_description.confidence
                        )
                    )
                item_quantity = item.value.get("Quantity")
                if item_quantity:
                    print(
                        "......Item Quantity: {} has confidence: {}".format(
                            item_quantity.value, item_quantity.confidence
                        )
                    )
                item_price = item.value.get("Price")
                if item_price:
                    print(
                        "......Individual Item Price: {} has confidence: {}".format(
                            item_price.value, item_price.confidence
                        )
                    )
                item_total_price = item.value.get("TotalPrice")
                if item_total_price:
                    print(
                        "......Total Item Price: {} has confidence: {}".format(
                            item_total_price.value, item_total_price.confidence
                        )
                    )
        subtotal = receipt.fields.get("Subtotal")
        if subtotal:
            print(
                "Subtotal: {} has confidence: {}".format(
                    subtotal.value, subtotal.confidence
                )
            )
        tax = receipt.fields.get("TotalTax")
        if tax:
            print("Total tax: {} has confidence: {}".format(tax.value, tax.confidence))
        tip = receipt.fields.get("Tip")
        if tip:
            print("Tip: {} has confidence: {}".format(tip.value, tip.confidence))
        total = receipt.fields.get("Total")
        if total:
            print("Total: {} has confidence: {}".format(total.value, total.confidence))
        print("--------------------------------------")


if __name__ == "__main__":
    analyze_receipts()

请访问 GitHub 上的 Azure 示例存储库,并查看收据模型输出

使用 ID 文档模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_identity_documents():
# sample document
    identityUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-idDocument", identityUrl
        )
    id_documents = poller.result()

    for idx, id_document in enumerate(id_documents.documents):
        print("--------Analyzing ID document #{}--------".format(idx + 1))
        first_name = id_document.fields.get("FirstName")
        if first_name:
            print(
                "First Name: {} has confidence: {}".format(
                    first_name.value, first_name.confidence
                )
            )
        last_name = id_document.fields.get("LastName")
        if last_name:
            print(
                "Last Name: {} has confidence: {}".format(
                    last_name.value, last_name.confidence
                )
            )
        document_number = id_document.fields.get("DocumentNumber")
        if document_number:
            print(
                "Document Number: {} has confidence: {}".format(
                    document_number.value, document_number.confidence
                )
            )
        dob = id_document.fields.get("DateOfBirth")
        if dob:
            print(
                "Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence)
            )
        doe = id_document.fields.get("DateOfExpiration")
        if doe:
            print(
                "Date of Expiration: {} has confidence: {}".format(
                    doe.value, doe.confidence
                )
            )
        sex = id_document.fields.get("Sex")
        if sex:
            print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
        address = id_document.fields.get("Address")
        if address:
            print(
                "Address: {} has confidence: {}".format(
                    address.value, address.confidence
                )
            )
        country_region = id_document.fields.get("CountryRegion")
        if country_region:
            print(
                "Country/Region: {} has confidence: {}".format(
                    country_region.value, country_region.confidence
                )
            )
        region = id_document.fields.get("Region")
        if region:
            print(
                "Region: {} has confidence: {}".format(region.value, region.confidence)
            )

        print("--------------------------------------")

if __name__ == "__main__":
    analyze_identity_documents()

请访问 GitHub 上的 Azure 示例存储库,并查看 ID 文档模型输出

使用名片模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_business_card():
      # sample document
    businessCardUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-businessCard", businessCardUrl, locale="en-US"
        )
    business_cards = poller.result()

    for idx, business_card in enumerate(business_cards.documents):
        print("--------Analyzing business card #{}--------".format(idx + 1))
        contact_names = business_card.fields.get("ContactNames")
        if contact_names:
            for contact_name in contact_names.value:
                print(
                    "Contact First Name: {} has confidence: {}".format(
                        contact_name.value["FirstName"].value,
                        contact_name.value[
                            "FirstName"
                        ].confidence,
                    )
                )
                print(
                    "Contact Last Name: {} has confidence: {}".format(
                        contact_name.value["LastName"].value,
                        contact_name.value[
                            "LastName"
                        ].confidence,
                    )
                )
        company_names = business_card.fields.get("CompanyNames")
        if company_names:
            for company_name in company_names.value:
                print(
                    "Company Name: {} has confidence: {}".format(
                        company_name.value, company_name.confidence
                    )
                )
        departments = business_card.fields.get("Departments")
        if departments:
            for department in departments.value:
                print(
                    "Department: {} has confidence: {}".format(
                        department.value, department.confidence
                    )
                )
        job_titles = business_card.fields.get("JobTitles")
        if job_titles:
            for job_title in job_titles.value:
                print(
                    "Job Title: {} has confidence: {}".format(
                        job_title.value, job_title.confidence
                    )
                )
        emails = business_card.fields.get("Emails")
        if emails:
            for email in emails.value:
                print(
                    "Email: {} has confidence: {}".format(email.value, email.confidence)
                )
        websites = business_card.fields.get("Websites")
        if websites:
            for website in websites.value:
                print(
                    "Website: {} has confidence: {}".format(
                        website.value, website.confidence
                    )
                )
        addresses = business_card.fields.get("Addresses")
        if addresses:
            for address in addresses.value:
                print(
                    "Address: {} has confidence: {}".format(
                        address.value, address.confidence
                    )
                )
        mobile_phones = business_card.fields.get("MobilePhones")
        if mobile_phones:
            for phone in mobile_phones.value:
                print(
                    "Mobile phone number: {} has confidence: {}".format(
                        phone.content, phone.confidence
                    )
                )
        faxes = business_card.fields.get("Faxes")
        if faxes:
            for fax in faxes.value:
                print(
                    "Fax number: {} has confidence: {}".format(
                        fax.content, fax.confidence
                    )
                )
        work_phones = business_card.fields.get("WorkPhones")
        if work_phones:
            for work_phone in work_phones.value:
                print(
                    "Work phone number: {} has confidence: {}".format(
                        work_phone.content, work_phone.confidence
                    )
                )
        other_phones = business_card.fields.get("OtherPhones")
        if other_phones:
            for other_phone in other_phones.value:
                print(
                    "Other phone number: {} has confidence: {}".format(
                        other_phone.value, other_phone.confidence
                    )
                )

        print("--------------------------------------")

if __name__ == "__main__":
    analyze_business_card()

请访问 GitHub 上的 Azure 示例存储库,并查看名片模型输出

注意

此项目使用 cURL 命令行工具执行 REST API 调用。

先决条件

  • Azure 订阅 - 创建试用订阅

  • 已安装 cURL 命令行工具。 Windows 10 和 Windows 11 随附 cURL 副本。 在命令提示符窗口中输入以下 cURL 命令。 如果显示帮助选项,则 cURL 已安装在 Windows 环境中。

    curl -help
    

    如果未安装 cURL,可以在此处获取:

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

设置环境变量

若要与文档智能服务交互,需要创建 DocumentAnalysisClient 类的实例。 为此,请使用 Azure 门户中的 keyendpoint 实例化客户端。 对于此项目,使用环境变量来存储和访问凭据。

重要

如果使用 API 密钥,请将其安全地存储在某个其他位置,例如 Azure Key Vault 中。 请不要直接在代码中包含 API 密钥,并且切勿公开发布该密钥。

有关 Azure AI 服务安全性的详细信息,请参阅对 Azure AI 服务的请求进行身份验证

若要为文档智能资源密钥设置环境变量,请打开控制台窗口,按照操作系统和开发环境的说明进行操作。 将 <yourKey><yourEndpoint> 替换为 Azure 门户中资源的值。

环境变量不区分大小写。 它们通常以大写形式声明,其中包含的单词以下划线联接。 请根据命令提示符运行以下命令:

  1. 设置密钥变量:

    setx DI_KEY <yourKey>
    
  2. 设置终结点变量

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 设置环境变量后关闭命令提示符窗口。 这些值将一直保留,直到你再次更改它们。

  4. 重启任何读取环境变量的运行程序。 例如,如果正在使用 Visual Studio 或 Visual Studio Code 作为编辑器,请在运行示例代码之前重启它。

下面是其他一些可与环境变量一起使用的有用命令:

命令 操作 示例
setx VARIABLE_NAME= 通过将环境变量值设置为空字符串来删除环境变量。 setx DI_KEY=
setx VARIABLE_NAME=value 设置或更改环境变量的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 显示特定环境变量的值。 set DI_KEY
set 显示所有环境变量。 set

分析文档并获取结果

POST 请求用于通过预生成或自定义模型分析文档。 GET 请求用于检索文档分析调用的结果。 modelId 与 POST 一起使用,resultId 与 GET 操作一起使用。

使用下表作为指南。 将 <modelId><document-url> 替换为所需的值:

型号 modelId description document-url
“读取”模型 prebuilt-read 示例手册 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png
布局模型 预生成布局 预订确认示例 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png
W-2 窗体模型 prebuilt-tax.us.w2 示例 W-2 表单 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png
发票模型 预生成的发票 示例发票 https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf
收据模型 prebuilt-receipt 示例收据 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png
ID 文档模型 prebuilt-idDocument 示例身份证明文档 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png

POST 请求

打开控制台窗口并运行以下 cURL 命令。 该命令包含之前在“设置环境变量”部分中创建的终结点和关键环境变量。 如果变量名称不同,请替换这些变量。 请记得替换 <modelId><document-url> 参数。

curl -i -X POST "%FR_ENDPOINT%formrecognizer/documentModels/<modelId>:analyze?api-version=2023-07-31" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

若要启用附加功能,请在 POST 请求中使用 features 查询参数。 2023-07-31 (GA) 版本提供了四项附加功能:ocr.highResolutionocr.formulaocr.fontqueryFields.premium。 若要详细了解每项功能,请参阅自定义模型

只能调用读取和布局模型的 highResolution公式字体功能,以及常规文档模型的 queryFields 功能。 以下示例演示如何调用布局模型的 highResolution公式字体功能。

curl -i -X POST "%FR_ENDPOINT%formrecognizer/documentModels/prebuilt-layout:analyze?features=ocr.highResolution,ocr.formula,ocr.font?api-version=2023-07-31" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

POST 响应

你将收到 202 (Success) 响应,其中包含“Operation-location”标头。 使用此标头的值来检索响应结果。

显示 POST 响应的屏幕截图,其中突出显示了操作位置。

获取分析结果 (GET 请求)

调用 Analyze document API 后,请调用 [Get analyze 结果}(https://learn.microsoft.com/rest/api/aiservices/document-models/get-analyze-result?view=rest-aiservices-2023-07-31&preserve-view=true&tabs=HTTP) API,以获取操作的状态和提取的数据。

cURL 命令行工具不设置包含 JSON 内容的 API 响应的格式,这会使内容难以阅读。 要设置 JSON 响应的格式,请在 GET 请求中的 JSON 格式设置工具前面添加竖线。

将 NodeJS json 工具用作 cURL 的 JSON 格式化程序。 如果未安装 Node.js,请下载并安装最新版本。

  1. 使用以下命令打开控制台窗口并安装 json 工具:

    npm install -g jsontool
    
  2. 通过在 GET 请求中添加竖线 | json,打印易读的 JSON 输出。

    curl -i -X GET "<endpoint>formrecognizer/documentModels/prebuilt-read/analyzeResults/0e49604a-2d8e-4b15-b6b8-bb456e5d3e0a?api-version=2023-07-31"-H "Ocp-Apim-Subscription-Key: <subscription key>" | json
    

GET 请求

在运行以下命令之前,请进行以下更改:

  • <POST 响应>替换为 POST 响应的标头“Operation-location”。
  • 如果 <FR_KEY 不同于代码中的名称,请将其替换为你的环境变量的变量。
  • 将 *<json-tool> 替换为 JSON 格式设置工具。
curl -i -X GET "<POST response>" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" | `<json-tool>`

检查响应

你将收到包含 JSON 输出的 200 (Success) 响应。 第一个字段 status 指示操作的状态。 如果操作未完成,则 status 的值为 runningnotStarted。 再次手动或通过脚本调用 API。 我们建议两次调用间隔一秒或更长时间。

请访问 GitHub 上的 Azure 示例存储库,查看每个文档智能模型的 GET 响应:

型号 输出 URL
“读取”模型 读取模型输出
布局模型 布局模型输出
W-2 税务模型 W-2 税务模型输出
发票模型 发票模型输出
收据模型 收据模型输出
ID 文档模型 ID 文档模型输出

后续步骤

祝贺你! 你已了解如何使用文档智能模型以不同方式分析各种文档。 接下来,请探索文档智能工作室和参考文档。

本指南介绍如何将文档智能添加到应用程序和工作流中。 可以使用所选编程语言或 REST API。 Azure AI 文档智能是一项基于云的 Azure AI 服务,它使用机器学习从文档中提取键值对、文本和表。 我们建议你在学习该技术时使用免费服务。 请记住,每月的免费页数限于 500。

可使用以下 API 提取表单和文档中的结构化数据:

重要

本项目面向文档智能 REST API 版本 v2.1。

本文中的代码使用了同步方法和不受保护的凭据存储。

参考文档 | 库源代码 | 包 (NuGet) | 示例

先决条件

  • Azure 订阅 - 创建试用订阅

  • Visual Studio IDE 或最新版本的 .NET Core

  • 包含一组训练数据的 Azure 存储 Blob。 有关整理训练数据集的提示和选项,请参阅生成和训练自定义模型。 对于本教程,可使用示例数据集Train 文件夹下的文件。 下载并提取 sample_data.zip

  • 智能资源。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

设置编程环境

在控制台窗口中,使用 dotnet new 命令创建名为 formrecognizer-project 的新控制台应用。 此命令将创建包含单个源文件的简单“Hello World”C# 项目:program.cs

dotnet new console -n formrecognizer-project

将目录更改为新创建的应用文件夹。 可以使用以下命令生成应用程序:

dotnet build

生成输出不应包含警告或错误。

...
Build succeeded.
 0 Warning(s)
 0 Error(s)
...

安装客户端库

在应用程序目录中,使用以下命令安装适用于 .NET 的文档智能客户端库:

dotnet add package Azure.AI.FormRecognizer --version 3.1.1

在编辑器或 IDE 中,从项目目录打开 Program.cs 文件。 然后,添加以下 using 指令:

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

在应用程序的 Program 类中,为资源的密钥和终结点创建变量。

重要

转到 Azure 门户。 如果你在“先决条件”部分创建的文档智能资源部署成功,请选择“后续步骤”下的“转到资源”按钮。 在左侧导航菜单中的“资源管理”下,选择“密钥和终结点”。

请记住完成后将密钥从代码中删除。 切勿公开发布。 对于生产环境,请使用安全方法来存储和访问凭据。 有关详细信息,请参阅 Azure AI 服务安全性

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

在应用程序的“Main”方法中,添加对此项目中使用的异步任务的调用:

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

使用对象模型

在文档智能中,可以创建两种不同的客户端类型。 第一种是 FormRecognizerClient,用于查询服务以识别表单域和内容。 第二种是 FormTrainingClient,用于创建和管理可改进识别的自定义模型。

FormRecognizerClient 提供以下操作:

  • 使用为了分析自定义表单而训练的自定义模型,来识别表单字段和内容。 这些值在 RecognizedForm 对象的集合中返回。 请参阅使用自定义模型分析表单
  • 无需训练模型即可识别表单内容,包括表格、行和单词。 表单内容在 FormPage 对象的集合中返回。 请参阅分析布局
  • 使用文档智能服务上预先训练的模型来识别美国的收据、名片、发票和 ID 文档中的常见字段。

FormTrainingClient 提供操作以实现以下目的:

  • 训练自定义模型,以分析在自定义表单中找到的所有字段和值。 会返回一个 CustomFormModel,它指示模型分析的表单类型,以及为每种表单类型提取的字段。
  • 训练自定义模型,以分析通过标记自定义表单指定的特定字段和值。 会返回一个 CustomFormModel,它指示模型提取的字段以及每个字段的估计准确度。
  • 管理在帐户中创建的模型。
  • 将自定义模型从一个文档智能资源复制到另一个资源。

请参阅训练模型管理自定义模型的示例。

注意

还可以使用图形用户界面(例如示例标记工具)来训练模型。

对客户端进行身份验证

Main 下,创建名为“AuthenticateClient”的方法。 在其他任务中使用此方法来验证对文档智能服务的请求。 此方法使用 AzureKeyCredential 对象,因此,如果需要,你可以更新密钥而无需创建新的客户端对象。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

对于就训练客户端进行身份验证的新方法,请重复这些步骤。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

获取用于测试的资产

还需要为训练和测试数据添加对 URL 的引用。 将这些引用添加到“Program”类的根中。

  1. 若要检索自定义模型训练数据的 SAS URL,请在 Azure 门户中找到存储资源,然后选择“数据存储>容器”。

  2. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  3. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  4. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

重复上述步骤以获取 Blob 存储容器中单个文档的 SAS URL。 将该 SAS URL 也保存到临时位置。

保存包含的示例图像的 URL。 GitHub 上也会提供该图片)。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

分析布局

可以使用文档智能分析文档中的表格、行和单词,而无需训练模型。 返回的值是 FormPage 对象的集合。 提交的文档中每个页面都有一个对象。 有关布局提取的详细信息,请参阅文档智能布局模型

若要分析位于给定 URL 的文件的内容,请使用 StartRecognizeContentFromUri 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

提示

还可从本地文件中获取内容。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeContent。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

此任务的其余部分将内容信息输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

结果与以下输出类似。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    Line 6 has 3 words, and text: 'Sunnayvale, CA 87659'.
    Line 7 has 1 word, and text: '99243'.
    Line 8 has 2 words, and text: 'Invoice Number'.
    Line 9 has 2 words, and text: 'Invoice Date'.
    Line 10 has 3 words, and text: 'Invoice Due Date'.
    Line 11 has 1 word, and text: 'Charges'.
    Line 12 has 2 words, and text: 'VAT ID'.
    Line 13 has 1 word, and text: '34278587'.
    Line 14 has 1 word, and text: '6/18/2017'.
    Line 15 has 1 word, and text: '6/24/2017'.
    Line 16 has 1 word, and text: '$56,651.49'.
    Line 17 has 1 word, and text: 'PT'.
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    Cell (0, 5) contains text: 'VAT ID'.
    Cell (1, 0) contains text: '34278587'.
    Cell (1, 1) contains text: '6/18/2017'.
    Cell (1, 2) contains text: '6/24/2017'.
    Cell (1, 3) contains text: '$56,651.49'.
    Cell (1, 5) contains text: 'PT'.

分析回执

本部分演示了如何使用预先训练的收据模型分析和提取美国收据中的常见字段。 有关收据分析的详细信息,请参阅文档智能收据模型

若要分析位于某个 URL 的收据,请使用 StartRecognizeReceiptsFromUri 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

提示

你还可以分析本地收据图像。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeReceipts。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedForm 对象的集合。 提交的文档中每个页面都有一个对象。 下面代码处理给定 URI 的回执,并将主字段和值输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

结果与以下输出类似。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    Line 6 has 3 words, and text: 'Sunnayvale, CA 87659'.
    Line 7 has 1 word, and text: '99243'.
    Line 8 has 2 words, and text: 'Invoice Number'.
    Line 9 has 2 words, and text: 'Invoice Date'.
    Line 10 has 3 words, and text: 'Invoice Due Date'.
    Line 11 has 1 word, and text: 'Charges'.
    Line 12 has 2 words, and text: 'VAT ID'.
    Line 13 has 1 word, and text: '34278587'.
    Line 14 has 1 word, and text: '6/18/2017'.
    Line 15 has 1 word, and text: '6/24/2017'.
    Line 16 has 1 word, and text: '$56,651.49'.
    Line 17 has 1 word, and text: 'PT'.
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    Cell (0, 5) contains text: 'VAT ID'.
    Cell (1, 0) contains text: '34278587'.
    Cell (1, 1) contains text: '6/18/2017'.
    Cell (1, 2) contains text: '6/24/2017'.
    Cell (1, 3) contains text: '$56,651.49'.
    Cell (1, 5) contains text: 'PT'.
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'

分析名片

本部分演示了如何使用预先训练的模型分析和提取英文名片中的常见字段。 有关名片分析的详细信息,请参阅文档智能名片模型

若要分析位于某个 URL 的名片,请使用 StartRecognizeBusinessCardsFromUriAsync 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

提示

你还可以分析本地名片图像。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeBusinessCards。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

以下代码处理给定 URI 的名片,并将主字段和值输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

分析发票

本部分演示了如何使用预先训练的模型分析和提取销售发票中的常见字段。 有关发票分析的详细信息,请参阅文档智能发票模型

若要分析位于某个 URL 的发票,请使用 StartRecognizeInvoicesFromUriAsync 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

提示

你还可以分析本地发票图像。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeInvoices。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

以下代码处理给定 URI 的发票,并将主字段和值输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

分析 ID 文档

本部分演示了如何使用文档智能预生成的 ID 模型来分析和提取政府颁发的身份文档(全球护照和美国驾照)中的关键信息。 有关 ID 文档分析的详细信息,请参阅文档智能 ID 文档模型

若要从 URI 分析 ID 文档,请使用 StartRecognizeIdentityDocumentsFromUriAsync 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

提示

还可分析本地 ID 文档图像。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeIdentityDocumentsAsync。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

以下代码会处理给定 URI 的 ID 文档,并将主字段和值输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>
class Program {
  // <snippet_creds>
  private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
  private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
  private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
  // </snippet_creds>
  // <snippet_urls>
  string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
  string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
  string receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
  string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
  string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

  string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

  // </snippet_urls>
  // <snippet_main>
  static void Main(string[] args) {
    // new code:
    var recognizeContent = RecognizeContent(recognizerClient);
    Task.WaitAll(recognizeContent);

    var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
    Task.WaitAll(analyzeReceipt);

    var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
    Task.WaitAll(analyzeBusinessCard);

    var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
    Task.WaitAll(analyzeInvoice);

    var analyzeId = AnalyzeId(recognizerClient, idUrl);
    Task.WaitAll(analyzeId);

    var trainModel = TrainModel(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
    Task.WaitAll(trainModel);

    var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
    Task.WaitAll(analyzeForm);

    var manageModels = ManageModels(trainingClient, trainingDataUrl);
    Task.WaitAll(manageModels);

  }
  // </snippet_main>
  // <snippet_auth>
  static private FormRecognizerClient AuthenticateClient() {
    string endpoint = "<replace-with-your-form-recognizer-endpoint-here>";
    string apiKey = "<replace-with-your-form-recognizer-key-here>";
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
  }
  // </snippet_auth>
  // <snippet_getcontent_call>
  private static async Task RecognizeContent(FormRecognizerClient recognizerClient) {
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizeClient.StartRecognizeContentFromUri(new Uri(invoiceUri)).WaitForCompletionAsync();
    // </snippet_getcontent_call>
    // <snippet_getcontent_print>
    foreach(FormPage page in formPages) {
      Console.WriteLine($ "Form Page {page.PageNumber} has {page.Lines.Count} lines.");

      for (int i = 0; i < page.Lines.Count; i++) {
        FormLine line = page.Lines[i];
        Console.WriteLine($ "    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "
        s " : "")}, and text: '{line.Text}'.");
      }

      for (int i = 0; i < page.Tables.Count; i++) {
        FormTable table = page.Tables[i];
        Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
        foreach(FormTableCell cell in table.Cells) {
          Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
        }
      }
    }
  }
  // </snippet_getcontent_print>
  // <snippet_receipt_call>
  private static async Task AnalyzeReceipt(
  FormRecognizerClient recognizerClient, string receiptUri) {
    RecognizedFormCollection receipts = await recognizeClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
    // </snippet_receipt_call>
    // <snippet_receipt_print>
    foreach(RecognizedForm receipt in receipts) {
      FormField merchantNameField;
      if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField)) {
        if (merchantNameField.Value.ValueType == FieldValueType.String) {
          string merchantName = merchantNameField.Value.AsString();

          Console.WriteLine($ "Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
      }

      FormField transactionDateField;
      if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField)) {
        if (transactionDateField.Value.ValueType == FieldValueType.Date) {
          DateTime transactionDate = transactionDateField.Value.AsDate();

          Console.WriteLine($ "Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
      }

      FormField itemsField;
      if (receipt.Fields.TryGetValue("Items", out itemsField)) {
        if (itemsField.Value.ValueType == FieldValueType.List) {
          foreach(FormField itemField in itemsField.Value.AsList()) {
            Console.WriteLine("Item:");

            if (itemField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > itemFields = itemField.Value.AsDictionary();

              FormField itemNameField;
              if (itemFields.TryGetValue("Name", out itemNameField)) {
                if (itemNameField.Value.ValueType == FieldValueType.String) {
                  string itemName = itemNameField.Value.AsString();

                  Console.WriteLine($ "    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                }
              }

              FormField itemTotalPriceField;
              if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField)) {
                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float) {
                  float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                  Console.WriteLine($ "    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                }
              }
            }
          }
        }
      }
      FormField totalField;
      if (receipt.Fields.TryGetValue("Total", out totalField)) {
        if (totalField.Value.ValueType == FieldValueType.Float) {
          float total = totalField.Value.AsFloat();

          Console.WriteLine($ "Total: '{total}', with confidence '{totalField.Confidence}'");
        }
      }
    }
  }
  // </snippet_receipt_print>
  // <snippet_bc_call>
  private static async Task AnalyzeBusinessCard(
  FormRecognizerClient recognizerClient, string bcUrl) {
    RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();
    // </snippet_bc_call>
    // <snippet_bc_print>
    foreach(RecognizedForm businessCard in businessCards) {
      FormField ContactNamesField;
      if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
        if (ContactNamesField.Value.ValueType == FieldValueType.List) {
          foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
            Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

            if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
              IReadOnlyDictionary < string,
              FormField > contactNameFields = contactNameField.Value.AsDictionary();

              FormField firstNameField;
              if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
                if (firstNameField.Value.ValueType == FieldValueType.String) {
                  string firstName = firstNameField.Value.AsString();

                  Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                }
              }

              FormField lastNameField;
              if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
                if (lastNameField.Value.ValueType == FieldValueType.String) {
                  string lastName = lastNameField.Value.AsString();

                  Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                }
              }
            }
          }
        }
      }

      FormField jobTitlesFields;
      if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
        if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
            if (jobTitleField.Value.ValueType == FieldValueType.String) {
              string jobTitle = jobTitleField.Value.AsString();

              Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
            }
          }
        }
      }

      FormField departmentFields;
      if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
        if (departmentFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField departmentField in departmentFields.Value.AsList()) {
            if (departmentField.Value.ValueType == FieldValueType.String) {
              string department = departmentField.Value.AsString();

              Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
            }
          }
        }
      }

      FormField emailFields;
      if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
        if (emailFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField emailField in emailFields.Value.AsList()) {
            if (emailField.Value.ValueType == FieldValueType.String) {
              string email = emailField.Value.AsString();

              Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
            }
          }
        }
      }

      FormField websiteFields;
      if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
        if (websiteFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField websiteField in websiteFields.Value.AsList()) {
            if (websiteField.Value.ValueType == FieldValueType.String) {
              string website = websiteField.Value.AsString();

              Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
            }
          }
        }
      }

      FormField mobilePhonesFields;
      if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
        if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
            if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
            }
          }
        }
      }

      FormField otherPhonesFields;
      if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
        if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
            if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
              string otherPhone = otherPhoneField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
            }
          }
        }
      }

      FormField faxesFields;
      if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
        if (faxesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField faxField in faxesFields.Value.AsList()) {
            if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
              string fax = faxField.Value.AsPhoneNumber();

              Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
            }
          }
        }
      }

      FormField addressesFields;
      if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
        if (addressesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField addressField in addressesFields.Value.AsList()) {
            if (addressField.Value.ValueType == FieldValueType.String) {
              string address = addressField.Value.AsString();

              Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
            }
          }
        }
      }

      FormField companyNamesFields;
      if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
        if (companyNamesFields.Value.ValueType == FieldValueType.List) {
          foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
            if (companyNameField.Value.ValueType == FieldValueType.String) {
              string companyName = companyNameField.Value.AsString();

              Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
            }
          }
        }
      }
    }
  }
  // </snippet_bc_print>
  // <snippet_invoice_call>
  private static async Task AnalyzeInvoice(
  FormRecognizerClient recognizerClient, string invoiceUrl) {
    var options = new RecognizeInvoicesOptions() {
      Locale = "en-US"
    };
    RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();
    // </snippet_invoice_call>
    // <snippet_invoice_print>
    RecognizedForm invoice = invoices.Single();

    FormField invoiceIdField;
    if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
      if (invoiceIdField.Value.ValueType == FieldValueType.String) {
        string invoiceId = invoiceIdField.Value.AsString();
        Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
      }
    }

    FormField invoiceDateField;
    if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
      if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
        DateTime invoiceDate = invoiceDateField.Value.AsDate();
        Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
      }
    }

    FormField dueDateField;
    if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
      if (dueDateField.Value.ValueType == FieldValueType.Date) {
        DateTime dueDate = dueDateField.Value.AsDate();
        Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
      }
    }

    FormField vendorNameField;
    if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
      if (vendorNameField.Value.ValueType == FieldValueType.String) {
        string vendorName = vendorNameField.Value.AsString();
        Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
      }
    }

    FormField vendorAddressField;
    if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
      if (vendorAddressField.Value.ValueType == FieldValueType.String) {
        string vendorAddress = vendorAddressField.Value.AsString();
        Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
      }
    }

    FormField customerNameField;
    if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
      if (customerNameField.Value.ValueType == FieldValueType.String) {
        string customerName = customerNameField.Value.AsString();
        Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
      }
    }

    FormField customerAddressField;
    if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
      if (customerAddressField.Value.ValueType == FieldValueType.String) {
        string customerAddress = customerAddressField.Value.AsString();
        Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
      }
    }

    FormField customerAddressRecipientField;
    if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
      if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
        string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
        Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
      }
    }

    FormField invoiceTotalField;
    if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
      if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
        float invoiceTotal = invoiceTotalField.Value.AsFloat();
        Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
      }
    }
  }

  // </snippet_invoice_print>
  // <snippet_id_call>
  private static async Task AnalyzeId(
  FormRecognizerClient recognizerClient, string idUrl) {
    RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

    //</snippet_id_call>
    //<snippet_id_print>
    RecognizedForm identityDocument = identityDocuments.Single();

    if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
      if (addressField.Value.ValueType == FieldValueType.String) {
        string address = addressField.Value.AsString();
        Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
      if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
      if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
      if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
        DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
      }
    }

    if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
      if (documentNumberField.Value.ValueType == FieldValueType.String) {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
      }
      RecognizedForm identityDocument = identityDocuments.Single();

      if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
        if (addressField.Value.ValueType == FieldValueType.String) {
          string address = addressField.Value.AsString();
          Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
        if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
          string countryRegion = countryRegionField.Value.AsCountryRegion();
          Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
        if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
          Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
        if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
          DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
          Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
        if (documentNumberField.Value.ValueType == FieldValueType.String) {
          string documentNumber = documentNumberField.Value.AsString();
          Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
        if (firstNameField.Value.ValueType == FieldValueType.String) {
          string firstName = firstNameField.Value.AsString();
          Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
        if (lastNameField.Value.ValueType == FieldValueType.String) {
          string lastName = lastNameField.Value.AsString();
          Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
        }
      }

      if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
        if (regionfield.Value.ValueType == FieldValueType.String) {
          string region = regionfield.Value.AsString();
          Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
        }
      }
      //</snippet_id_print>
      // <snippet_train>
      private static async Task < Guid > TrainModel(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false).WaitForCompletionAsync();

        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
      }
      // </snippet_train_return>
      // <snippet_trainlabels>
      private static async Task < Guid > TrainModelWithLabels(
      FormRecognizerClient trainingClient, string trainingDataUrl) {
        CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true).WaitForCompletionAsync();
        Console.WriteLine($ "Custom Model Info:");
        Console.WriteLine($ "    Model Id: {model.ModelId}");
        Console.WriteLine($ "    Model Status: {model.Status}");
        Console.WriteLine($ "    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($ "    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach(CustomFormSubmodel submodel in model.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        return model.ModelId;
      }
      // </snippet_trainlabels_response>
      // <snippet_analyze>
      // Analyze PDF form data
      private static async Task AnalyzePdfForm(
      FormRecognizerClient recognizerClient, Guid modelId, string formUrl) {
        RecognizedFormCollection forms = await recognizeClient.StartRecognizeCustomFormsFromUri(modelId, new Uri(invoiceUri)).WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach(RecognizedForm form in forms) {
          Console.WriteLine($ "Form of type: {form.FormType}");
          foreach(FormField field in form.Fields.Values) {
            Console.WriteLine($ "Field '{field.Name}: ");

            if (field.LabelData != null) {
              Console.WriteLine($ "    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($ "    Value: '{field.ValueData.Text}");
            Console.WriteLine($ "    Confidence: '{field.Confidence}");
          }
          Console.WriteLine("Table data:");
          foreach(FormPage page in form.Pages.Values) {
            for (int i = 0; i < page.Tables.Count; i++) {
              FormTable table = page.Tables[i];
              Console.WriteLine($ "Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
              foreach(FormTableCell cell in table.Cells) {
                Console.WriteLine($ "    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "
                header " : "
                text ")}: '{cell.Text}'");
              }
            }
          }
        }
      }
      // </snippet_analyze_response>
      // <snippet_manage>
      private static async Task ManageModels(
      FormRecognizerClient trainingClient, string trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($ "Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($ "It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>
        // <snippet_manage_model_list>
        Pageable < CustomFormModelInfo > models = trainingClient.GetCustomModels();

        foreach(CustomFormModelInfo modelInfo in models) {
          Console.WriteLine($ "Custom Model Info:");
          Console.WriteLine($ "    Model Id: {modelInfo.ModelId}");
          Console.WriteLine($ "    Model Status: {modelInfo.Status}");
          Console.WriteLine($ "    Training model started on: {modelInfo.TrainingStartedOn}");
          Console.WriteLine($ "    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>
        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
        new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(modelId);

        Console.WriteLine($ "Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach(CustomFormSubmodel submodel in modelCopy.Submodels) {
          Console.WriteLine($ "Submodel Form Type: {submodel.FormType}");
          foreach(CustomFormModelField field in submodel.Fields.Values) {
            Console.Write($ "    FieldName: {field.Name}");
            if (field.Label != null) {
              Console.Write($ ", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
          }
        }
        // </snippet_manage_model_get>
        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
      }
      // </snippet_manage_model_delete>
    }

训练自定义模型

本部分演示如何使用自己的数据训练模型。 训练的模型可以输出结构化数据,其中包含原始文档中的键/值关系。 训练模型后,可对其进行测试和重新训练,并最终使用它来根据需求提取其他表单中的数据。

注意

你还可以使用图形用户界面(例如文档智能示例标记工具)来训练模型。

不使用标签训练模型

训练自定义模型可分析在自定义表单中找到的所有字段和值,无需手动标记训练文档。 下面的方法使用给定文档集训练模型,并将该模型的状态输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

返回的 CustomFormModel 对象包含该模型可以分析的表单类型以及它可以从每种表单类型中提取的字段的相关信息。 下面的代码块将此信息输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

最后,返回训练的模型 ID 以供后续步骤使用。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

为了提高可读性,此示例输出已截断。

Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    ...
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    ...
Custom Model Info:
    Model Id: 95035721-f19d-40eb-8820-0c806b42798b
    Model Status: Ready
    Training model started on: 8/24/2020 6:36:44 PM +00:00
    Training model completed on: 8/24/2020 6:36:50 PM +00:00
Submodel Form Type: form-95035721-f19d-40eb-8820-0c806b42798b
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    ...
Custom Model Info:
    Model Id: e7a1181b-1fb7-40be-bfbe-1ee154183633
    Model Status: Ready
    Training model started on: 8/24/2020 6:36:44 PM +00:00
    Training model completed on: 8/24/2020 6:36:52 PM +00:00
Submodel Form Type: form-0
    FieldName: field-0, FieldLabel: Additional Notes:
    FieldName: field-1, FieldLabel: Address:
    FieldName: field-2, FieldLabel: Company Name:
    FieldName: field-3, FieldLabel: Company Phone:
    FieldName: field-4, FieldLabel: Dated As:
    FieldName: field-5, FieldLabel: Details
    FieldName: field-6, FieldLabel: Email:
    FieldName: field-7, FieldLabel: Hero Limited
    FieldName: field-8, FieldLabel: Name:
    FieldName: field-9, FieldLabel: Phone:
    ...

使用标签训练模型

你还可以通过手动标记训练文档来训练自定义模型。 在某些情况下,使用标签训练可改善效果。 若要使用标签进行训练,需要在 Blob 存储容器中添加特殊标签信息文件 (<filename>.pdf.labels.json) 和训练文档。 文档智能示例标记工具提供了可帮助你创建这些标签文件的 UI。 获得它们后,可以调用“StartTrainingAsync”方法,并将“uselabels”参数设置为 true

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

返回的 CustomFormModel 指示模型可以提取的字段,以及每个字段中的估计准确度。 下面的代码块将此信息输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

为了提高可读性,此示例输出已截断。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    ...
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    ...
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Custom Model Info:
    Model Id: 63c013e3-1cab-43eb-84b0-f4b20cb9214c
    Model Status: Ready
    Training model started on: 8/24/2020 6:42:54 PM +00:00
    Training model completed on: 8/24/2020 6:43:01 PM +00:00
Submodel Form Type: form-63c013e3-1cab-43eb-84b0-f4b20cb9214c
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    FieldName: DatedAs
    FieldName: Email
    FieldName: Merchant
    ...

使用自定义模型分析表单

本部分演示了如何通过你使用自己的表单训练的模型,从自定义模板类型中提取键/值信息和其他内容。

重要

若要实现此方案,必须已训练好一个模型,以便可以将其 ID 传递到下面的方法中。

使用 StartRecognizeCustomFormsFromUri 方法。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

提示

还可分析本地文件。 请参阅 FormRecognizerClient 方法,例如 StartRecognizeCustomForms。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedForm 对象的集合。 提交的文档中每个页面都有一个对象。 以下代码将分析结果输出到控制台。 它将输出每个识别的字段和相应的值以及置信度分数。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

为了提高可读性,此输出响应已截断。

Custom Model Info:
    Model Id: 9b0108ee-65c8-450e-b527-bb309d054fc4
    Model Status: Ready
    Training model started on: 8/24/2020 7:00:31 PM +00:00
    Training model completed on: 8/24/2020 7:00:32 PM +00:00
Submodel Form Type: form-9b0108ee-65c8-450e-b527-bb309d054fc4
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    ...
Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    ...

Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    ...
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Custom Model Info:
    Model Id: dc115156-ce0e-4202-bbe4-7426e7bee756
    Model Status: Ready
    Training model started on: 8/24/2020 7:00:31 PM +00:00
    Training model completed on: 8/24/2020 7:00:41 PM +00:00
Submodel Form Type: form-0
    FieldName: field-0, FieldLabel: Additional Notes:
    FieldName: field-1, FieldLabel: Address:
    FieldName: field-2, FieldLabel: Company Name:
    FieldName: field-3, FieldLabel: Company Phone:
    FieldName: field-4, FieldLabel: Dated As:
    ...
Form of type: custom:form
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: '$56,651.49
    Confidence: '0.249
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: 'PT
    Confidence: '0.245
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: '99243
    Confidence: '0.114
   ...

管理自定义模型

本部分演示如何管理帐户中存储的自定义模型。 你将在以下方法中完成多个操作:

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

检查 FormRecognizer 资源帐户中的模型数

下面的代码块会检查文档智能帐户中保存的模型数,并将其与帐户限制进行比较。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

输出

Account has 20 models.
It can have at most 5000 models.

列出资源帐户中当前存储的模型

下面的代码块会列出帐户中的当前模型,并将这些模型的详细信息输出到控制台。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

为了提高可读性,此示例输出已截断。

Custom Model Info:
    Model Id: 05932d5a-a2f8-4030-a2ef-4e5ed7112515
    Model Status: Creating
    Training model started on: 8/24/2020 7:35:02 PM +00:00
    Training model completed on: 8/24/2020 7:35:02 PM +00:00
Custom Model Info:
    Model Id: 150828c4-2eb2-487e-a728-60d5d504bd16
    Model Status: Ready
    Training model started on: 8/24/2020 7:33:25 PM +00:00
    Training model completed on: 8/24/2020 7:33:27 PM +00:00
Custom Model Info:
    Model Id: 3303e9de-6cec-4dfb-9e68-36510a6ecbb2
    Model Status: Ready
    Training model started on: 8/24/2020 7:29:27 PM +00:00
    Training model completed on: 8/24/2020 7:29:36 PM +00:00

使用模型 ID 获取特定模型

下面的代码块会训练新模型(如不使用标签训练模型中所述),然后使用该模型的 ID 检索对它的第二次引用。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

为了提高可读性,此示例输出已截断。

Custom Model Info:
    Model Id: 150828c4-2eb2-487e-a728-60d5d504bd16
    Model Status: Ready
    Training model started on: 8/24/2020 7:33:25 PM +00:00
    Training model completed on: 8/24/2020 7:33:27 PM +00:00
Submodel Form Type: form-150828c4-2eb2-487e-a728-60d5d504bd16
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    FieldName: DatedAs
    FieldName: Email
    FieldName: Merchant
    FieldName: PhoneNumber
    FieldName: PurchaseOrderNumber
    FieldName: Quantity
    FieldName: Signature
    FieldName: Subtotal
    FieldName: Tax
    FieldName: Total
    FieldName: VendorName
    FieldName: Website
...

从资源帐户中删除模型

还可以通过引用模型的 ID 从帐户中删除该模型。 该方法也以此步骤结束。

// <snippet_using>
using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
// </snippet_using>

class Program
{
    // <snippet_creds>
    private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);
    // </snippet_creds>

    // <snippet_urls>
    private static string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
    private static string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
    private static string receiptUrl = "/cognitive-services/form-recognizer/media"
    + "/contoso-allinone.jpg";
    // </snippet_urls>

    // <snippet_main>
    static void Main(string[] args)
    {
        var recognizerClient = AuthenticateClient();
        var trainingClient = AuthenticateTrainingClient();
        
        var recognizeContent = RecognizeContent(recognizerClient);
        Task.WaitAll(recognizeContent);

        var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
        Task.WaitAll(analyzeReceipt); 

        var trainModel = TrainModel(trainingClient, trainingDataUrl);
        Task.WaitAll(trainModel); 

        var analyzeForm = AnalyzePdfForm(recognizerClient, trainModel, formUrl);
        Task.WaitAll(analyzeForm);
        
        var manageModels = ManageModels(trainingClient, trainingDataUrl);
        Task.WaitAll(manageModels);

    }
    // </snippet_main>

    // <snippet_auth>
    private static FormRecognizerClient AuthenticateClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormRecognizerClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth>
    
    // <snippet_auth_training>
    static private FormTrainingClient AuthenticateTrainingClient()
    {
        var credential = new AzureKeyCredential(apiKey);
        var client = new FormTrainingClient(new Uri(endpoint), credential);
        return client;
    }
    // </snippet_auth_training>

    // <snippet_getcontent_call>
    private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
    {
        var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
        FormPageCollection formPages = await recognizerClient
            .StartRecognizeContentFromUri(new Uri(invoiceUri))
            .WaitForCompletionAsync();
        // </snippet_getcontent_call>

        // <snippet_getcontent_print>
        foreach (FormPage page in formPages)
        {
            Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

            for (int i = 0; i < page.Lines.Count; i++)
            {
                FormLine line = page.Lines[i];
                Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
            }

            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
                }
            }
        }
    }
    // </snippet_getcontent_print>

    // <snippet_receipt_call>
    private static async Task AnalyzeReceipt(
        FormRecognizerClient recognizerClient, string receiptUri)
    {
        RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();
        // </snippet_receipt_call>

        // <snippet_receipt_print>
        foreach (RecognizedForm receipt in receipts)
        {
            FormField merchantNameField;
            if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
            {
                if (merchantNameField.Value.ValueType == FieldValueType.String)
                {
                    string merchantName = merchantNameField.Value.AsString();

                    Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
                }
            }

            FormField transactionDateField;
            if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
            {
                if (transactionDateField.Value.ValueType == FieldValueType.Date)
                {
                    DateTime transactionDate = transactionDateField.Value.AsDate();

                    Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
                }
            }

            FormField itemsField;
            if (receipt.Fields.TryGetValue("Items", out itemsField))
            {
                if (itemsField.Value.ValueType == FieldValueType.List)
                {
                    foreach (FormField itemField in itemsField.Value.AsList())
                    {
                        Console.WriteLine("Item:");

                        if (itemField.Value.ValueType == FieldValueType.Dictionary)
                        {
                            IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                            FormField itemNameField;
                            if (itemFields.TryGetValue("Name", out itemNameField))
                            {
                                if (itemNameField.Value.ValueType == FieldValueType.String)
                                {
                                    string itemName = itemNameField.Value.AsString();

                                    Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                                }
                            }

                            FormField itemTotalPriceField;
                            if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                            {
                                if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                                {
                                    float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                    Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                                }
                            }
                        }
                    }
                }
            }
            FormField totalField;
            if (receipt.Fields.TryGetValue("Total", out totalField))
            {
                if (totalField.Value.ValueType == FieldValueType.Float)
                {
                    float total = totalField.Value.AsFloat();

                    Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
                }
            }
        }
    }
    // </snippet_receipt_print>

    // <snippet_train>
    private static async Task<String> TrainModel(
        FormTrainingClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
        .WaitForCompletionAsync();

        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_train>
        // <snippet_train_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_train_response>
        // <snippet_train_return>
        return model.ModelId;
    }
    // </snippet_train_return>

    // <snippet_trainlabels>
    private static async Task<Guid> TrainModelWithLabelsAsync(
        FormRecognizerClient trainingClient, string trainingDataUrl)
    {
        CustomFormModel model = await trainingClient
        .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
        .WaitForCompletionAsync();
        Console.WriteLine($"Custom Model Info:");
        Console.WriteLine($"    Model Id: {model.ModelId}");
        Console.WriteLine($"    Model Status: {model.Status}");
        Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
        Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");
        // </snippet_trainlabels>
        // <snippet_trainlabels_response>
        foreach (CustomFormSubmodel submodel in model.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        return model.ModelId;
    }
    // </snippet_trainlabels_response>

    // <snippet_analyze>
    // Analyze PDF form data
    private static async Task AnalyzePdfForm(
        FormRecognizerClient recognizerClient, String modelId, string formUrl)
    {
        RecognizedFormCollection forms = await recognizerClient
        .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
        .WaitForCompletionAsync();
        // </snippet_analyze>
        // <snippet_analyze_response>
        foreach (RecognizedForm form in forms)
        {
            Console.WriteLine($"Form of type: {form.FormType}");
            foreach (FormField field in form.Fields.Values)
            {
                Console.WriteLine($"Field '{field.Name}: ");

                if (field.LabelData != null)
                {
                    Console.WriteLine($"    Label: '{field.LabelData.Text}");
                }

                Console.WriteLine($"    Value: '{field.ValueData.Text}");
                Console.WriteLine($"    Confidence: '{field.Confidence}");
            }
            Console.WriteLine("Table data:");
            foreach (FormPage page in form.Pages)
            {
                for (int i = 0; i < page.Tables.Count; i++)
                {
                    FormTable table = page.Tables[i];
                    Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                    foreach (FormTableCell cell in table.Cells)
                    {
                        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                    }
                }
            }
        }
    }
    // </snippet_analyze_response>

    // <snippet_manage>
    private static async Task ManageModels(
        FormTrainingClient trainingClient, string trainingFileUrl)
    {
        // </snippet_manage>
        // <snippet_manage_model_count>
        // Check number of models in the FormRecognizer account, 
        // and the maximum number of models that can be stored.
        AccountProperties accountProperties = trainingClient.GetAccountProperties();
        Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
        Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");
        // </snippet_manage_model_count>

        // <snippet_manage_model_list>
        Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

        foreach (CustomFormModelInfo modelInfo in models)
        {
            Console.WriteLine($"Custom Model Info:");
            Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
            Console.WriteLine($"    Model Status: {modelInfo.Status}");
            Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
            Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
        }
        // </snippet_manage_model_list>

        // <snippet_manage_model_get>
        // Create a new model to store in the account
        CustomFormModel model = await trainingClient.StartTrainingAsync(
            new Uri(trainingFileUrl)).WaitForCompletionAsync();

        // Get the model that was just created
        CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

        Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

        foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
        {
            Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
            foreach (CustomFormModelField field in submodel.Fields.Values)
            {
                Console.Write($"    FieldName: {field.Name}");
                if (field.Label != null)
                {
                    Console.Write($", FieldLabel: {field.Label}");
                }
                Console.WriteLine("");
            }
        }
        // </snippet_manage_model_get>

        // <snippet_manage_model_delete>
        // Delete the model from the account.
        trainingClient.DeleteModel(model.ModelId);
    }
    // </snippet_manage_model_delete>
}

运行应用程序

从应用程序目录使用 dotnet run 命令运行应用程序。

dotnet run

清理资源

如果想要清理并移除 Azure AI 服务订阅,可以删除资源或资源组。 删除资源组同时也会删除与之相关联的任何其他资源。

疑难解答

使用 .NET SDK 与 Azure AI 文档智能客户端库交互时,服务返回的错误将导致 RequestFailedException。 它们包括 REST API 请求会返回的相同的 HTTP 状态代码。

例如,如果提交具有无效 URI 的收据图像,则会返回 400 错误,表示“请求错误”。

try
{
    RecognizedReceiptCollection receipts = await client.StartRecognizeReceiptsFromUri(new Uri(receiptUri)).WaitForCompletionAsync();
}
catch (RequestFailedException e)
{
    Console.WriteLine(e.ToString());
}

你会发现,操作的客户端请求 ID 等其他信息已被记录下来。


Message:
    Azure.RequestFailedException: Service request failed.
    Status: 400 (Bad Request)

Content:
    {"error":{"code":"FailedToDownloadImage","innerError":
    {"requestId":"8ca04feb-86db-4552-857c-fde903251518"},
    "message":"Failed to download image from input URL."}}

Headers:
    Transfer-Encoding: chunked
    x-envoy-upstream-service-time: REDACTED
    apim-request-id: REDACTED
    Strict-Transport-Security: REDACTED
    X-Content-Type-Options: REDACTED
    Date: Mon, 20 Apr 2020 22:48:35 GMT
    Content-Type: application/json; charset=utf-8

后续步骤

在此项目中,你使用了文档智能 .NET 客户端库以不同的方式来训练模型和分析表单。 接下来,请了解如何创建更好的训练数据集并生成更准确的模型。

重要

本项目面向文档智能 REST API 版本 2.1。

参考文档 | 库源代码 | 包 (Maven) | 示例

先决条件

  • Azure 订阅 - 创建试用订阅

  • 最新版 Java 开发工具包 (JDK)

  • Gradle 生成工具,或其他依赖项管理器。

  • 文档智能资源。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • 包含一组训练数据的 Azure 存储 Blob。 有关整理训练数据集的提示和选项,请参阅生成和训练自定义模型。 对于本项目,可使用示例数据集Train 文件夹下的文件。 下载并提取 sample_data.zip

设置编程环境

若要设置编程环境,请创建 Gradle 项目并安装客户端库。

创建新的 Gradle 项目

在控制台窗口中,为你的应用创建一个新目录,然后导航到该目录。

mkdir myapp
cd myapp

从工作目录运行 gradle init 命令。 此命令将创建 Gradle 的基本生成文件,其中包括 build.gradle.kts - 在运行时将使用该文件创建并配置应用程序。

gradle init --type basic

当提示你选择一个 DSL 时,选择 Kotlin。

安装客户端库

本项目使用 Gradle 依赖项管理器。 可以在 Maven 中央存储库中找到客户端库以及其他依赖项管理器的信息。

在项目的 build.gradle.kts 文件中,以 implementation 语句的形式包含客户端库及所需的插件和设置。

plugins {
    java
    application
}
application {
    mainClass.set("FormRecognizer")
}
repositories {
    mavenCentral()
}
dependencies {
    implementation(group = "com.azure", name = "azure-ai-formrecognizer", version = "3.1.1")
}

创建 Java 文件

在工作目录中运行以下命令:

mkdir -p src/main/java

导航到新的文件夹,创建一个名为 FormRecognizer.java 的文件。 在编辑器或 IDE 中打开该文件并添加以下 import 语句:


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

在应用程序的 FormRecognizer 类中,为资源的密钥和终结点创建变量。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

重要

转到 Azure 门户。 如果你在“先决条件”部分创建的文档智能资源部署成功,请选择“后续步骤”下的“转到资源”按钮。 在“密钥和终结点”页的“资源管理”下,可以找到密钥和终结点。

请记住完成后将密钥从代码中删除。 切勿公开发布。 对于生产环境,请使用安全方法来存储和访问凭据。 有关详细信息,请参阅 Azure AI 服务安全性

在应用程序的 main 方法中,添加对本项目中使用的方法的调用。 你将在稍后定义这些调用。 还需要为训练和测试数据添加对 URL 的引用。

  1. 若要检索自定义模型训练数据的 SAS URL,请在 Azure 门户中找到存储资源,然后选择“数据存储>容器”。

  2. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  3. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  4. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

若要获取要测试的表单的 URL,可以使用上述步骤获取 blob 存储中单个文档的 SAS URL。 或者获取位于其他位置的文档的 URL。

使用上述方法还可获取收据图像的 URL。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}
// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

使用对象模型

在文档智能中,可以创建两种不同的客户端类型。 第一种是 FormRecognizerClient,用于查询服务以识别表单域和内容。 第二种是 FormTrainingClient,用于创建和管理可改进识别的自定义模型。

FormRecognizerClient 提供以下任务的操作:

  • 使用为了分析自定义表单而训练的自定义模型,来识别表单字段和内容。 这些值在 RecognizedForm 对象的集合中返回。 请参阅分析自定义表单
  • 无需训练模型即可识别表单内容,包括表格、行和单词。 表单内容在 FormPage 对象的集合中返回。 请参阅分析布局
  • 使用文档智能服务上预先训练的模型来识别美国的收据、名片、发票和 ID 文档中的常见字段。

FormTrainingClient 提供操作以实现以下目的:

  • 训练自定义模型,以分析在自定义表单中找到的所有字段和值。 会返回一个 CustomFormModel,它指示模型分析的表单类型,以及为每种表单类型提取的字段。
  • 训练自定义模型,以分析通过标记自定义表单指定的特定字段和值。 会返回一个 CustomFormModel,它指示模型提取的字段以及每个字段的估计准确度。
  • 管理在帐户中创建的模型。
  • 将自定义模型从一个文档智能资源复制到另一个资源。

注意

还可以使用图形用户界面(例如示例标记工具)来训练模型。

对客户端进行身份验证

main 方法顶部添加以下代码。 你将使用前面定义的订阅变量对两个客户端对象进行身份验证。 你将使用 AzureKeyCredential 对象,因此在需要时,你无需创建新的客户端对象即可更新密钥。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

分析布局

可以使用文档智能分析文档中的表格、行和单词,而无需训练模型。 有关布局提取的详细信息,请参阅文档智能布局模型

若要分析位于给定 URL 的文件的内容,请使用 beginRecognizeContentFromUrl 方法。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

提示

还可从本地文件中获取内容。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeContent。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 FormPage 对象的集合。 提交的文档中每个页面都有一个对象。 下面的代码循环访问这些对象,并输出提取的键/值对和表数据。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

Get form content...
----Recognizing content ----
Has width: 8.500000 and height: 11.000000, measured with unit: inch.
Table has 2 rows and 6 columns.
Cell has text Invoice Number.
Cell has text Invoice Date.
Cell has text Invoice Due Date.
Cell has text Charges.
Cell has text VAT ID.
Cell has text 458176.
Cell has text 3/28/2018.
Cell has text 4/16/2018.
Cell has text $89,024.34.
Cell has text ET.

分析回执

本部分演示了如何使用预先训练的收据模型分析和提取美国收据中的常见字段。 有关收据分析的详细信息,请参阅文档智能收据模型

若要分析位于某个 URI 的收据,请使用 beginRecognizeReceiptsFromUrl 方法。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

提示

你还可以分析本地收据图像。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeReceipts。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedReceipt 对象的集合。 提交的文档中每个页面都有一个对象。 接下来的代码块会循环访问回执,并将其详细信息输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

接下来的代码块会循环访问在回执上检测到的各个项,并将其详细信息输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

Analyze receipt...
----------- Recognized Receipt page 0 -----------
Merchant Name: Contoso Contoso, confidence: 0.62
Merchant Address: 123 Main Street Redmond, WA 98052, confidence: 0.99
Transaction Date: 2020-06-10, confidence: 0.90
Receipt Items:
Name: Cappuccino, confidence: 0.96s
Quantity: null, confidence: 0.957s]
Total Price: 2.200000, confidence: 0.95
Name: BACON & EGGS, confidence: 0.94s
Quantity: null, confidence: 0.927s]
Total Price: null, confidence: 0.93

分析名片

本部分演示了如何使用预先训练的模型分析和提取英文名片中的常见字段。 有关名片分析的详细信息,请参阅文档智能名片模型

若要分析位于某个 URL 的名片,请使用 beginRecognizeBusinessCardsFromUrl 方法。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

提示

你还可以分析本地名片图像。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeBusinessCards。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedForm 对象的集合。 文档中每个卡都有一个对象。 以下代码处理给定 URI 的名片,并将主字段和值输出到控制台。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

分析发票

本部分演示了如何使用预先训练的模型分析和提取销售发票中的常见字段。 有关发票分析的详细信息,请参阅文档智能发票模型

若要分析位于某个 URL 的发票,请使用 beginRecognizeInvoicesFromUrl 方法。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

提示

你还可以分析本地发票。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeInvoices。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedForm 对象的集合。 文档中每张发票都有一个对象。 以下代码处理给定 URI 的发票,并将主字段和值输出到控制台。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

分析 ID 文档

本部分演示了如何使用文档智能预生成的 ID 模型来分析和提取政府颁发的身份文档(全球护照和美国驾照)中的关键信息。 有关 ID 文档分析的详细信息,请参阅文档智能 ID 文档模型

若要从 URI 分析 ID 文档,请使用 beginRecognizeIdentityDocumentsFromUrl 方法。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

提示

还可分析本地 ID 文档图像。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeIdentityDocuments。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

以下代码会处理给定 URI 的 ID 文档,并将主字段和值输出到控制台。

// <snippet_imports>
import com.azure.ai.formrecognizer.* ;
import com.azure.ai.formrecognizer.training.* ;
import com.azure.ai.formrecognizer.models.* ;
import com.azure.ai.formrecognizer.training.models.* ;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>
public class FormRecognizer {

	// <snippet_creds>
	static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
	static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
	// </snippet_creds>
	public static void main(String[] args) {
		// <snippet_auth>
		FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

		FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();
		// </snippet_auth>
		// <snippet_mainvars>
		String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
		String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
		String receiptUrl = "/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
		String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
		String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
		String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
		// </snippet_mainvars>
		// <snippet_maincalls>
		// Call Form Recognizer scenarios:
		System.out.println("Get form content...");
		GetContent(recognizerClient, formUrl);

		System.out.println("Analyze receipt...");
		AnalyzeReceipt(recognizerClient, receiptUrl);

		System.out.println("Analyze business card...");
		AnalyzeBusinessCard(recognizerClient, bcUrl);

		System.out.println("Analyze invoice...");
		AnalyzeInvoice(recognizerClient, invoiceUrl);

		System.out.println("Analyze id...");
		AnalyzeId(recognizerClient, idUrl);

		System.out.println("Train Model with training data...");
		String modelId = TrainModel(trainingClient, trainingDataUrl);

		System.out.println("Analyze PDF form...");
		AnalyzePdfForm(recognizerClient, modelId, formUrl);

		System.out.println("Manage models...");
		ManageModels(trainingClient, trainingDataUrl);
		// </snippet_maincalls>
	}

	// <snippet_getcontent_call>
	private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
		String analyzeFilePath = invoiceUri;
		SyncPoller < FormRecognizerOperationResult,
		List < FormPage >> recognizeContentPoller = recognizerClient.beginRecognizeContentFromUrl(analyzeFilePath);

		List < FormPage > contentResult = recognizeContentPoller.getFinalResult();
		// </snippet_getcontent_call>
		// <snippet_getcontent_print>
		contentResult.forEach(formPage - >{
			// Table information
			System.out.println("----Recognizing content ----");
			System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(), formPage.getHeight(), formPage.getUnit());
			formPage.getTables().forEach(formTable - >{
				System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(), formTable.getColumnCount());
				formTable.getCells().forEach(formTableCell - >{
					System.out.printf("Cell has text %s.%n", formTableCell.getText());
				});
				System.out.println();
			});
		});
	}
	// </snippet_getcontent_print>
	// <snippet_receipts_call>
	private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> syncPoller = recognizerClient.beginRecognizeReceiptsFromUrl(receiptUri);
		List < RecognizedForm > receiptPageResults = syncPoller.getFinalResult();
		// </snippet_receipts_call>
		// <snippet_receipts_print>
		for (int i = 0; i < receiptPageResults.size(); i++) {
			RecognizedForm recognizedForm = receiptPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
			FormField merchantNameField = recognizedFields.get("MerchantName");
			if (merchantNameField != null) {
				if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
					String merchantName = merchantNameField.getValue().asString();
					System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName, merchantNameField.getConfidence());
				}
			}
			FormField merchantAddressField = recognizedFields.get("MerchantAddress");
			if (merchantAddressField != null) {
				if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
					String merchantAddress = merchantAddressField.getValue().asString();
					System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress, merchantAddressField.getConfidence());
				}
			}
			FormField transactionDateField = recognizedFields.get("TransactionDate");
			if (transactionDateField != null) {
				if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
					LocalDate transactionDate = transactionDateField.getValue().asDate();
					System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate, transactionDateField.getConfidence());
				}
			}
			// </snippet_receipts_print>
			// <snippet_receipts_print_items>
			FormField receiptItemsField = recognizedFields.get("Items");
			if (receiptItemsField != null) {
				System.out.printf("Receipt Items: %n");
				if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
					List < FormField > receiptItems = receiptItemsField.getValue().asList();
					receiptItems.stream().filter(receiptItem - >FieldValueType.MAP == receiptItem.getValue().getValueType()).map(formField - >formField.getValue().asMap()).forEach(formFieldMap - >formFieldMap.forEach((key, formField) - >{
						if ("Name".equals(key)) {
							if (FieldValueType.STRING == formField.getValue().getValueType()) {
								String name = formField.getValue().asString();
								System.out.printf("Name: %s, confidence: %.2fs%n", name, formField.getConfidence());
							}
						}
						if ("Quantity".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float quantity = formField.getValue().asFloat();
								System.out.printf("Quantity: %f, confidence: %.2f%n", quantity, formField.getConfidence());
							}
						}
						if ("Price".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float price = formField.getValue().asFloat();
								System.out.printf("Price: %f, confidence: %.2f%n", price, formField.getConfidence());
							}
						}
						if ("TotalPrice".equals(key)) {
							if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
								Float totalPrice = formField.getValue().asFloat();
								System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice, formField.getConfidence());
							}
						}
					}));
				}
			}
		}
	}
	// </snippet_receipts_print_items>
	// <snippet_bc_call>
	private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

		List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();
		// </snippet_bc_call>
		// <snippet_bc_print>
		for (int i = 0; i < businessCardPageResults.size(); i++) {
			RecognizedForm recognizedForm = businessCardPageResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
			FormField contactNamesFormField = recognizedFields.get("ContactNames");
			if (contactNamesFormField != null) {
				if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
					List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
					contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
						System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
						return contactName.getValue().asMap();
					}).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
						if ("FirstName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String firstName = contactName.getValue().asString();
								System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
							}
						}
						if ("LastName".equals(key)) {
							if (FieldValueType.STRING == contactName.getValue().getValueType()) {
								String lastName = contactName.getValue().asString();
								System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
							}
						}
					}));
				}
			}

			FormField jobTitles = recognizedFields.get("JobTitles");
			if (jobTitles != null) {
				if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
					List < FormField > jobTitlesItems = jobTitles.getValue().asList();
					jobTitlesItems.stream().forEach(jobTitlesItem - >{
						if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
							String jobTitle = jobTitlesItem.getValue().asString();
							System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
						}
					});
				}
			}

			FormField departments = recognizedFields.get("Departments");
			if (departments != null) {
				if (FieldValueType.LIST == departments.getValue().getValueType()) {
					List < FormField > departmentsItems = departments.getValue().asList();
					departmentsItems.stream().forEach(departmentsItem - >{
						if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
							String department = departmentsItem.getValue().asString();
							System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
						}
					});
				}
			}

			FormField emails = recognizedFields.get("Emails");
			if (emails != null) {
				if (FieldValueType.LIST == emails.getValue().getValueType()) {
					List < FormField > emailsItems = emails.getValue().asList();
					emailsItems.stream().forEach(emailsItem - >{
						if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
							String email = emailsItem.getValue().asString();
							System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
						}
					});
				}
			}

			FormField websites = recognizedFields.get("Websites");
			if (websites != null) {
				if (FieldValueType.LIST == websites.getValue().getValueType()) {
					List < FormField > websitesItems = websites.getValue().asList();
					websitesItems.stream().forEach(websitesItem - >{
						if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
							String website = websitesItem.getValue().asString();
							System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
						}
					});
				}
			}

			FormField mobilePhones = recognizedFields.get("MobilePhones");
			if (mobilePhones != null) {
				if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
					List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
					mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
							String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
							System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
						}
					});
				}
			}

			FormField otherPhones = recognizedFields.get("OtherPhones");
			if (otherPhones != null) {
				if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
					List < FormField > otherPhonesItems = otherPhones.getValue().asList();
					otherPhonesItems.stream().forEach(otherPhonesItem - >{
						if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
							String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
							System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
						}
					});
				}
			}

			FormField faxes = recognizedFields.get("Faxes");
			if (faxes != null) {
				if (FieldValueType.LIST == faxes.getValue().getValueType()) {
					List < FormField > faxesItems = faxes.getValue().asList();
					faxesItems.stream().forEach(faxesItem - >{
						if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
							String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
							System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
						}
					});
				}
			}

			FormField addresses = recognizedFields.get("Addresses");
			if (addresses != null) {
				if (FieldValueType.LIST == addresses.getValue().getValueType()) {
					List < FormField > addressesItems = addresses.getValue().asList();
					addressesItems.stream().forEach(addressesItem - >{
						if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
							String address = addressesItem.getValue().asString();
							System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
						}
					});
				}
			}

			FormField companyName = recognizedFields.get("CompanyNames");
			if (companyName != null) {
				if (FieldValueType.LIST == companyName.getValue().getValueType()) {
					List < FormField > companyNameItems = companyName.getValue().asList();
					companyNameItems.stream().forEach(companyNameItem - >{
						if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
							String companyNameValue = companyNameItem.getValue().asString();
							System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
						}
					});
				}
			}
		}
	}
	// </snippet_bc_print>
	// <snippet_invoice_call>
	private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

		List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();
		// </snippet_invoice_call>
		// <snippet_invoice_print>
		for (int i = 0; i < recognizedInvoices.size(); i++) {
			RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
			Map < String,
			FormField > recognizedFields = recognizedInvoice.getFields();
			System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
			FormField vendorNameField = recognizedFields.get("VendorName");
			if (vendorNameField != null) {
				if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
					String merchantName = vendorNameField.getValue().asString();
					System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
				}
			}

			FormField vendorAddressField = recognizedFields.get("VendorAddress");
			if (vendorAddressField != null) {
				if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
					String merchantAddress = vendorAddressField.getValue().asString();
					System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
				}
			}

			FormField customerNameField = recognizedFields.get("CustomerName");
			if (customerNameField != null) {
				if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
					String merchantAddress = customerNameField.getValue().asString();
					System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
				}
			}

			FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
					String customerAddr = customerAddressRecipientField.getValue().asString();
					System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
				}
			}

			FormField invoiceIdField = recognizedFields.get("InvoiceId");
			if (invoiceIdField != null) {
				if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
					String invoiceId = invoiceIdField.getValue().asString();
					System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
				}
			}

			FormField invoiceDateField = recognizedFields.get("InvoiceDate");
			if (customerNameField != null) {
				if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
					LocalDate invoiceDate = invoiceDateField.getValue().asDate();
					System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
				}
			}

			FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
			if (customerAddressRecipientField != null) {
				if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
					Float invoiceTotal = invoiceTotalField.getValue().asFloat();
					System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
				}
			}
		}
	}
	// </snippet_invoice_print>
	//<snippet_id_call>
	private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
		SyncPoller < FormRecognizerOperationResult,
		List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

		List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();
		//</snippet_id_call>
		//<snippet_id_print>
		for (int i = 0; i < identityDocumentResults.size(); i++) {
			RecognizedForm recognizedForm = identityDocumentResults.get(i);
			Map < String,
			FormField > recognizedFields = recognizedForm.getFields();
			System.out.printf("----------- Recognized license info for page %d -----------%n", i);
			FormField addressField = recognizedFields.get("Address");
			if (addressField != null) {
				if (FieldValueType.STRING == addressField.getValue().getValueType()) {
					String address = addressField.getValue().asString();
					System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
				}
			}

			FormField countryRegionFormField = recognizedFields.get("CountryRegion");
			if (countryRegionFormField != null) {
				if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
					String countryRegion = countryRegionFormField.getValue().asCountryRegion();
					System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
				}
			}

			FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
			if (dateOfBirthField != null) {
				if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
					LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
					System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
				}
			}

			FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
			if (dateOfExpirationField != null) {
				if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
					LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
					System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
				}
			}

			FormField documentNumberField = recognizedFields.get("DocumentNumber");
			if (documentNumberField != null) {
				if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
					String documentNumber = documentNumberField.getValue().asString();
					System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
				}
			}

			FormField firstNameField = recognizedFields.get("FirstName");
			if (firstNameField != null) {
				if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
					String firstName = firstNameField.getValue().asString();
					System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
				}
			}

			FormField lastNameField = recognizedFields.get("LastName");
			if (lastNameField != null) {
				if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
					String lastName = lastNameField.getValue().asString();
					System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
				}
			}

			FormField regionField = recognizedFields.get("Region");
			if (regionField != null) {
				if (FieldValueType.STRING == regionField.getValue().getValueType()) {
					String region = regionField.getValue().asString();
					System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
				}
			}
		}
		//</snippet_id_print>
		// <snippet_train_call>
		private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingDataUrl, false);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_train_call>
			// <snippet_train_print>
			System.out.println("Recognized Fields:");
			// looping through the subModels, which contains the fields they were trained on
			// Since the given training documents are unlabeled, we still group them but
			// they do not have a label.
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				// Since the training data is unlabeled, we are unable to return the accuracy of
				// this model
				System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
				customFormSubmodel.getFields().forEach((field, customFormModelField) - >System.out.printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
			});
			// </snippet_train_print>
			// <snippet_train_return>
			return customFormModel.getModelId();
		}
		// </snippet_train_return>
		// <snippet_trainlabels_call>
		private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
			// Train custom model
			String trainingSetSource = trainingDataUrl;
			SyncPoller < FormRecognizerOperationResult,
			CustomFormModel > trainingPoller = trainingClient.beginTraining(trainingSetSource, true);

			CustomFormModel customFormModel = trainingPoller.getFinalResult();

			// Model Info
			System.out.printf("Model Id: %s%n", customFormModel.getModelId());
			System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
			System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
			System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
			// </snippet_trainlabels_call>
			// <snippet_trainlabels_print>
			// looping through the subModels, which contains the fields they were trained on
			// The labels are based on the ones you gave the training document.
			System.out.println("Recognized Fields:");
			// Since the data is labeled, we are able to return the accuracy of the model
			customFormModel.getSubmodels().forEach(customFormSubmodel - >{
				System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(), customFormSubmodel.getAccuracy());
				customFormSubmodel.getFields().forEach((label, customFormModelField) - >System.out.printf("The model found field '%s' to have name: %s with an accuracy: %.2f%n", label, customFormModelField.getName(), customFormModelField.getAccuracy()));
			});
			return customFormModel.getModelId();
		}
		// </snippet_trainlabels_print>
		// <snippet_analyze_call>
		// Analyze PDF form data
		private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
			SyncPoller < FormRecognizerOperationResult,
			List < RecognizedForm >> recognizeFormPoller = formClient.beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

			List < RecognizedForm > recognizedForms = recognizeFormPoller.getFinalResult();
			// </snippet_analyze_call>
			// <snippet_analyze_print>
			for (int i = 0; i < recognizedForms.size(); i++) {
				final RecognizedForm form = recognizedForms.get(i);
				System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
				System.out.printf("Form type: %s%n", form.getFormType());
				form.getFields().forEach((label, formField) - >
				// label data is populated if you are using a model trained with unlabeled data,
				// since the service needs to make predictions for labels if not explicitly
				// given to it.
				System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label, formField.getLabelData().getText(), formField.getConfidence()));
			}
		}
		// </snippet_analyze_print>
		// <snippet_manage>
		private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
			// </snippet_manage>
			// <snippet_manage_count>
			AtomicReference < String > modelId = new AtomicReference < >();

			// First, we see how many custom models we have, and what our limit is
			AccountProperties accountProperties = trainingClient.getAccountProperties();
			System.out.printf("The account has %s custom models, and we can have at most %s custom models", accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
			// </snippet_manage_count>
			// <snippet_manage_list>
			// Next, we get a paged list of all of our custom models
			PagedIterable < CustomFormModelInfo > customModels = trainingClient.listCustomModels();
			System.out.println("We have following models in the account:");
			customModels.forEach(customFormModelInfo - >{
				System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
				// get custom model info
				modelId.set(customFormModelInfo.getModelId());
				CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
				System.out.printf("Model Id: %s%n", customModel.getModelId());
				System.out.printf("Model Status: %s%n", customModel.getModelStatus());
				System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
				System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
				customModel.getSubmodels().forEach(customFormSubmodel - >{
					System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
					System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
					if (customFormSubmodel.getFields() != null) {
						customFormSubmodel.getFields().forEach((fieldText, customFormModelField) - >{
							System.out.printf("Field Text: %s%n", fieldText);
							System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
						});
					}
				});
			});
			// </snippet_manage_list>
			// <snippet_manage_delete>
			// Delete Custom Model
			System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(), trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
		}
		// </snippet_manage_delete>
	}

训练自定义模型

本部分演示如何使用自己的数据训练模型。 训练的模型可以输出结构化数据,其中包含原始文档中的键/值关系。 训练模型后,可对其进行测试和重新训练,并最终使用它来根据需求提取其他表单中的数据。

注意

你还可以使用图形用户界面(例如文档智能示例标记工具)来训练模型。

不使用标签训练模型

训练自定义模型可分析在自定义表单中找到的所有字段和值,无需手动标记训练文档。

下面的方法使用给定文档集训练模型,并将该模型的状态输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

返回的 CustomFormModel 对象包含该模型可以分析的表单类型以及它可以从每种表单类型中提取的字段的相关信息。 下面的代码块将此信息输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

最后,此方法返回模型的唯一 ID。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

Train Model with training data...
Model Id: 20c3544d-97b4-49d9-b39b-dc32d85f1358
Model Status: ready
Training started on: 2020-08-31T16:52:09Z
Training completed on: 2020-08-31T16:52:23Z

Recognized Fields:
The subModel has form type form-0
The model found field 'field-0' with label: Address:
The model found field 'field-1' with label: Charges
The model found field 'field-2' with label: Invoice Date
The model found field 'field-3' with label: Invoice Due Date
The model found field 'field-4' with label: Invoice For:
The model found field 'field-5' with label: Invoice Number
The model found field 'field-6' with label: VAT ID

使用标签训练模型

你还可以通过手动标记训练文档来训练自定义模型。 在某些情况下,使用标签训练可改善效果。 若要使用标签进行训练,需要在 Blob 存储容器中添加特殊标签信息文件 (<filename>.pdf.labels.json) 和训练文档。 文档智能示例标记工具提供了可帮助你创建这些标签文件的 UI。 获得它们后,可以调用“beginTraining”方法,并将“useTrainingLabels”参数设置为 true


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

返回的 CustomFormModel 指示模型可以提取的字段,以及每个字段中的估计准确度。 下面的代码块将此信息输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

Train Model with training data...
Model Id: 20c3544d-97b4-49d9-b39b-dc32d85f1358
Model Status: ready
Training started on: 2020-08-31T16:52:09Z
Training completed on: 2020-08-31T16:52:23Z

Recognized Fields:
The subModel has form type form-0
The model found field 'field-0' with label: Address:
The model found field 'field-1' with label: Charges
The model found field 'field-2' with label: Invoice Date
The model found field 'field-3' with label: Invoice Due Date
The model found field 'field-4' with label: Invoice For:
The model found field 'field-5' with label: Invoice Number
The model found field 'field-6' with label: VAT ID

使用自定义模型分析表单

本部分演示如何通过你使用自己的表单训练的模型,从自定义模板类型中提取键/值信息和其他内容。

重要

若要实现此方案,必须已训练好一个模型,以便可以将其 ID 传递到方法操作中。 请参阅使用标签训练模型

使用 beginRecognizeCustomFormsFromUrl 方法。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

提示

还可分析本地文件。 请参阅 FormRecognizerClient 方法,例如 beginRecognizeCustomForms。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

返回的值是 RecognizedForm 对象的集合。 提交的文档中每个页面都有一个对象。 以下代码将分析结果输出到控制台。 它将输出每个识别的字段和相应的值以及置信度分数。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

Analyze PDF form...
----------- Recognized custom template info for page 0 -----------
Form type: form-0
Field 'field-0' has label 'Address:' with a confidence score of 0.91.
Field 'field-1' has label 'Invoice For:' with a confidence score of 1.00.
Field 'field-2' has label 'Invoice Number' with a confidence score of 1.00.
Field 'field-3' has label 'Invoice Date' with a confidence score of 1.00.
Field 'field-4' has label 'Invoice Due Date' with a confidence score of 1.00.
Field 'field-5' has label 'Charges' with a confidence score of 1.00.
Field 'field-6' has label 'VAT ID' with a confidence score of 1.00.

管理自定义模型

本部分演示如何管理帐户中存储的自定义模型。 例如,下面的代码在单个方法中执行所有模型管理任务。 首先,复制以下方法签名:


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

检查 FormRecognizer 资源帐户中的模型数

下面的代码块会检查文档智能帐户中保存的模型数,并将其与帐户限制进行比较。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

The account has 12 custom models, and we can have at most 250 custom models

列出资源帐户中当前存储的模型

下面的代码块会列出帐户中的当前模型,并将这些模型的详细信息输出到控制台。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

结果与以下输出类似。

为了提高可读性,此响应已被截断。

We have following models in the account:
Model Id: 0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Model Id: 0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Model Status: ready
Training started on: 2020-06-04T18:33:08Z
Training completed on: 2020-06-04T18:33:10Z
Custom Model Form type: form-0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Custom Model Accuracy: 1.00
Field Text: invoice date
Field Accuracy: 1.00
Field Text: invoice number
Field Accuracy: 1.00
...

从资源帐户中删除模型

还可以通过引用模型的 ID 从帐户中删除该模型。


// <snippet_imports>
import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
// </snippet_imports>

public class FormRecognizer {

    // <snippet_creds>
    static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    // </snippet_creds>

    public static void main(String[] args) {
        // <snippet_auth>
        FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
                .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

        FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
                .endpoint(endpoint).buildClient();
        // </snippet_auth>

        // <snippet_mainvars>
        String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
        String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
        String receiptUrl = "/cognitive-services/form-recognizer/media"
                + "/contoso-allinone.jpg";
        // </snippet_mainvars>

        // <snippet_maincalls>
        // Call Form Recognizer scenarios:
        System.out.println("Get form content...");
        GetContent(recognizerClient, formUrl);

        System.out.println("Analyze receipt...");
        AnalyzeReceipt(recognizerClient, receiptUrl);

        System.out.println("Train Model with training data...");
        String modelId = TrainModel(trainingClient, trainingDataUrl);

        System.out.println("Analyze PDF form...");
        AnalyzePdfForm(recognizerClient, modelId, formUrl);

        System.out.println("Manage models...");
        ManageModels(trainingClient, trainingDataUrl);
        // </snippet_maincalls>
    }

    // <snippet_getcontent_call>
    private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
        String analyzeFilePath = invoiceUri;
        SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
                .beginRecognizeContentFromUrl(analyzeFilePath);

        List<FormPage> contentResult = recognizeContentPoller.getFinalResult();
        // </snippet_getcontent_call>
        // <snippet_getcontent_print>
        contentResult.forEach(formPage -> {
            // Table information
            System.out.println("----Recognizing content ----");
            System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                    formPage.getHeight(), formPage.getUnit());
            formPage.getTables().forEach(formTable -> {
                System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                        formTable.getColumnCount());
                formTable.getCells().forEach(formTableCell -> {
                    System.out.printf("Cell has text %s.%n", formTableCell.getText());
                });
                System.out.println();
            });
        });
    }
    // </snippet_getcontent_print>

    // <snippet_receipts_call>
    private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
                .beginRecognizeReceiptsFromUrl(receiptUri);
        List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();
        // </snippet_receipts_call>
        // <snippet_receipts_print>
        for (int i = 0; i < receiptPageResults.size(); i++) {
            RecognizedForm recognizedForm = receiptPageResults.get(i);
            Map<String, FormField> recognizedFields = recognizedForm.getFields();
            System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
            FormField merchantNameField = recognizedFields.get("MerchantName");
            if (merchantNameField != null) {
                if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
                    String merchantName = merchantNameField.getValue().asString();
                    System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                            merchantNameField.getConfidence());
                }
            }
            FormField merchantAddressField = recognizedFields.get("MerchantAddress");
            if (merchantAddressField != null) {
                if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
                    String merchantAddress = merchantAddressField.getValue().asString();
                    System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                            merchantAddressField.getConfidence());
                }
            }
            FormField transactionDateField = recognizedFields.get("TransactionDate");
            if (transactionDateField != null) {
                if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
                    LocalDate transactionDate = transactionDateField.getValue().asDate();
                    System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                            transactionDateField.getConfidence());
                }
            }
            // </snippet_receipts_print>
            // <snippet_receipts_print_items>
            FormField receiptItemsField = recognizedFields.get("Items");
            if (receiptItemsField != null) {
                System.out.printf("Receipt Items: %n");
                if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                    List<FormField> receiptItems = receiptItemsField.getValue().asList();
                    receiptItems.stream()
                            .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                            .map(formField -> formField.getValue().asMap())
                            .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                                if ("Name".equals(key)) {
                                    if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                        String name = formField.getValue().asString();
                                        System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Quantity".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float quantity = formField.getValue().asFloat();
                                        System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                                formField.getConfidence());
                                    }
                                }
                                if ("Price".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float price = formField.getValue().asFloat();
                                        System.out.printf("Price: %f, confidence: %.2f%n", price,
                                                formField.getConfidence());
                                    }
                                }
                                if ("TotalPrice".equals(key)) {
                                    if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                        Float totalPrice = formField.getValue().asFloat();
                                        System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                                formField.getConfidence());
                                    }
                                }
                            }));
                }
            }
        }
    }
    // </snippet_receipts_print_items>

    // <snippet_train_call>
    private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingDataUrl, false);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_train_call>
        // <snippet_train_print>
        System.out.println("Recognized Fields:");
        // looping through the subModels, which contains the fields they were trained on
        // Since the given training documents are unlabeled, we still group them but
        // they do not have a label.
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            // Since the training data is unlabeled, we are unable to return the accuracy of
            // this model
            System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
            customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
                    .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
        });
        // </snippet_train_print>
        // <snippet_train_return>
        return customFormModel.getModelId();
    }
    // </snippet_train_return>

    // <snippet_trainlabels_call>
    private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
        // Train custom model
        String trainingSetSource = trainingDataUrl;
        SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
                .beginTraining(trainingSetSource, true);

        CustomFormModel customFormModel = trainingPoller.getFinalResult();

        // Model Info
        System.out.printf("Model Id: %s%n", customFormModel.getModelId());
        System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
        System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
        System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());
        // </snippet_trainlabels_call>

        // <snippet_trainlabels_print>
        // looping through the subModels, which contains the fields they were trained on
        // The labels are based on the ones you gave the training document.
        System.out.println("Recognized Fields:");
        // Since the data is labeled, we are able to return the accuracy of the model
        customFormModel.getSubmodels().forEach(customFormSubmodel -> {
            System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                    customFormSubmodel.getAccuracy());
            customFormSubmodel.getFields()
                    .forEach((label, customFormModelField) -> System.out.printf(
                            "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                            customFormModelField.getName(), customFormModelField.getAccuracy()));
        });
        return customFormModel.getModelId();
    }
    // </snippet_trainlabels_print>

    // <snippet_analyze_call>
    // Analyze PDF form data
    private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
        SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
                .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

        List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();
        // </snippet_analyze_call>

        // <snippet_analyze_print>
        for (int i = 0; i < recognizedForms.size(); i++) {
            final RecognizedForm form = recognizedForms.get(i);
            System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
            System.out.printf("Form type: %s%n", form.getFormType());
            form.getFields().forEach((label, formField) ->
            // label data is populated if you are using a model trained with unlabeled data,
            // since the service needs to make predictions for labels if not explicitly
            // given to it.
            System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                    formField.getLabelData().getText(), formField.getConfidence()));
        }
    }
    // </snippet_analyze_print>

    // <snippet_manage>
    private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {
        // </snippet_manage>
        // <snippet_manage_count>
        AtomicReference<String> modelId = new AtomicReference<>();

        // First, we see how many custom models we have, and what our limit is
        AccountProperties accountProperties = trainingClient.getAccountProperties();
        System.out.printf("The account has %s custom models, and we can have at most %s custom models",
                accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());
        // </snippet_manage_count>
        // <snippet_manage_list>
        // Next, we get a paged list of all of our custom models
        PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
        System.out.println("We have following models in the account:");
        customModels.forEach(customFormModelInfo -> {
            System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
            // get custom model info
            modelId.set(customFormModelInfo.getModelId());
            CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
            System.out.printf("Model Id: %s%n", customModel.getModelId());
            System.out.printf("Model Status: %s%n", customModel.getModelStatus());
            System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
            System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
            customModel.getSubmodels().forEach(customFormSubmodel -> {
                System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
                System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
                if (customFormSubmodel.getFields() != null) {
                    customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                        System.out.printf("Field Text: %s%n", fieldText);
                        System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
                    });
                }
            });
        });
        // </snippet_manage_list>
        // <snippet_manage_delete>
        // Delete Custom Model
        System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
                trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
    }
    // </snippet_manage_delete>
}

运行应用程序

导航回主项目目录。 然后,使用以下命令生成应用:

gradle build

使用 run 目标运行应用程序:

gradle run

清理资源

如果想要清理并移除 Azure AI 服务订阅,可以删除资源或资源组。 删除资源组同时也会删除与之相关联的任何其他资源。

疑难解答

文档智能客户端会引发 ErrorResponseException 异常。 例如,如果尝试提供一个无效的文件源 URL,则会引发 ErrorResponseException,并会出现一个指出失败原因的错误。 在以下代码片段中,通过捕获异常并显示有关错误的其他信息来妥善处理该错误。

try {
    formRecognizerClient.beginRecognizeContentFromUrl("invalidSourceUrl");
} catch (ErrorResponseException e) {
    System.out.println(e.getMessage());
}

启用客户端日志记录

适用于 Java 的 Azure SDK 提供了一致的日志记录案例,有助于排查应用程序错误和加快解决速度。 生成的日志会在到达终端状态之前捕获应用程序的流,以帮助查找根本问题。 有关启用日志记录的详细信息,请参阅日志记录 Wiki

后续步骤

在此项目中,你使用了文档智能 Java 客户端库以不同的方式来训练模型和分析表单。 接下来,请了解如何创建更好的训练数据集并生成更准确的模型。

重要

本项目面向文档智能 REST API 版本 2.1。

参考文档 | 库源代码 | 包 (npm) | 示例

先决条件

  • Azure 订阅 - 创建试用订阅

  • 最新版本的 Visual Studio Code

  • Node.js 的最新 LTS 版本。

  • 包含一组训练数据的 Azure 存储 Blob。 有关整理训练数据集的提示和选项,请参阅生成和训练自定义模型。 对于本教程,可使用示例数据集Train 文件夹下的文件。 下载并提取 sample_data.zip

  • Azure AI 服务或文档智能资源。 创建文档智能资源。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

设置编程环境

创建应用程序并安装客户端库。

创建新的 Node.js 应用程序

  1. 在控制台窗口中,为你的应用创建一个目录,然后导航到该目录。

    mkdir myapp
    cd myapp
    
  2. 运行 npm init 命令以使用 package.json 文件创建一个 node 应用程序。

    npm init
    

安装客户端库

  1. 安装 ai-form-recognizer npm 包:

    npm install @azure/ai-form-recognizer
    

    应用的 package.json 文件将随依赖项进行更新。

  2. 创建一个名为 index.js 的文件,打开它并导入以下库:

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

  1. 为资源的 Azure 终结点和密钥创建变量。
// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

重要

转到 Azure 门户。 如果你在“先决条件”部分创建的文档智能资源部署成功,请选择“后续步骤”下的“转到资源”按钮。 在“密钥和终结点”页的“资源管理”下,可以找到密钥和终结点。

请记住完成后将密钥从代码中删除。 切勿公开发布。 对于生产环境,请使用安全方法来存储和访问凭据。 有关详细信息,请参阅 Azure AI 服务安全性

使用对象模型

在文档智能中,可以创建两种不同的客户端类型。 第一种是 FormRecognizerClient,用于查询服务以识别表单域和内容。 第二种是 FormTrainingClient,用于创建和管理可改进识别的自定义模型。

FormRecognizerClient 提供以下操作:

  • 使用为了分析自定义表单而训练的自定义模型,来识别表单字段和内容。 这些值在 RecognizedForm 对象的集合中返回。
  • 无需训练模型即可识别表单内容,包括表格、行和单词。 表单内容在 FormPage 对象的集合中返回。
  • 使用文档智能服务上预先训练的模型来识别美国的收据、名片、发票和 ID 文档中的常见字段。

FormTrainingClient 提供操作以实现以下目的:

  • 训练自定义模型,以分析在自定义表单中找到的所有字段和值。 会返回一个 CustomFormModel,它指示模型分析的表单类型,以及为每种表单类型提取的字段。 有关更多信息,请参阅关于无标签模型训练的服务文档
  • 训练自定义模型,以分析通过标记自定义表单指定的特定字段和值。 会返回一个 CustomFormModel,它指示模型提取的字段以及每个字段的估计准确度。 有关详细信息,请参阅本文中的使用标签训练模型
  • 管理在帐户中创建的模型。
  • 将自定义模型从一个文档智能资源复制到另一个资源。

注意

还可以使用图形用户界面(例如示例标记工具)来训练模型。

对客户端进行身份验证

使用你定义的订阅变量对客户端对象进行身份验证。 你将使用 AzureKeyCredential 对象,因此在需要时,你无需创建新的客户端对象即可更新密钥。 你还将创建训练客户端对象。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

获取用于测试的资产

还需要为训练和测试数据添加对 URL 的引用。

  1. 若要检索自定义模型训练数据的 SAS URL,请在 Azure 门户中找到存储资源,然后选择“数据存储>容器”。

  2. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  3. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  4. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

使用示例中包含的示例表单和收据图像。 GitHub 上也提供这些图像。 可以使用上述步骤获取 blob 存储中单个文档的 SAS URL。

分析布局

可以使用文档智能分析文档中的表格、行和单词,而无需训练模型。 有关布局提取的详细信息,请参阅文档智能布局模型。 若要分析位于给定 URI 的文件的内容,请使用 beginRecognizeContentFromUrl 方法。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

提示

还可使用 FormRecognizerClient 方法(如 beginRecognizeContent)从本地文件获取内容。

Page 1: width 8.5 and height 11 with unit inch
cell [0,0] has text Invoice Number
cell [0,1] has text Invoice Date
cell [0,2] has text Invoice Due Date
cell [0,3] has text Charges
cell [0,5] has text VAT ID
cell [1,0] has text 34278587
cell [1,1] has text 6/18/2017
cell [1,2] has text 6/24/2017
cell [1,3] has text $56,651.49
cell [1,5] has text PT

分析回执

本部分演示如何使用预先训练的收据模型分析和提取美国收据中的常见字段。 有关收据分析的详细信息,请参阅文档智能收据模型

若要分析位于某个 URI 的收据,请使用 beginRecognizeReceiptsFromUrl 方法。 下面的代码处理给定 URI 的回执,并将主字段和值输出到控制台。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 beginRecognizeReceipts)分析本地收据图像。

status: notStarted
status: running
status: succeeded
First receipt:
  Receipt Type: 'Itemized', with confidence of 0.659
  Merchant Name: 'Contoso Contoso', with confidence of 0.516
  Transaction Date: 'Sun Jun 09 2019 17:00:00 GMT-0700 (Pacific Daylight Time)', with confidence of 0.985
    Item Name: '8GB RAM (Black)', with confidence of 0.916
    Item Name: 'SurfacePen', with confidence of 0.858
  Total: '1203.39', with confidence of 0.774

分析名片

本部分演示了如何使用预先训练的模型分析和提取英文名片中的常见字段。 有关名片分析的详细信息,请参阅文档智能名片模型

若要分析位于某个 URL 的名片,请使用 beginRecognizeBusinessCardsFromURL 方法。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 beginRecognizeBusinessCards)分析本地名片图像。

分析发票

本部分演示了如何使用预先训练的模型分析和提取销售发票中的常见字段。 有关发票分析的详细信息,请参阅文档智能发票模型

若要分析位于某个 URL 的发票,请使用 beginRecognizeInvoicesFromUrl 方法。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 beginRecognizeInvoices)分析本地收据图像。

分析 ID 文档

本部分演示了如何使用文档智能预生成的 ID 模型来分析和提取政府颁发的身份文档(包括全球护照和美国驾照)中的关键信息。 有关 ID 文档分析的详细信息,请参阅文档智能 ID 文档模型

若要从 URL 分析 ID 文档,请使用 beginRecognizeIdDocumentsFromUrl 方法。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

训练自定义模型

本部分演示如何使用自己的数据训练模型。 训练的模型可以输出结构化数据,其中包含原始文档中的键/值关系。 训练模型后,可对其进行测试和重新训练,并最终使用它来根据需求提取其他表单中的数据。

注意

你还可以使用图形用户界面 (GUI)(例如文档智能示例标记工具)来训练模型。

不使用标签训练模型

训练自定义模型可分析在自定义表单中找到的所有字段和值,无需手动标记训练文档。

下面的函数使用给定文档集训练模型,并将该模型的状态输出到控制台。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

此处是使用 JavaScript SDK 中提供的训练数据训练的模型的输出。 为了提高可读性,此示例结果已截断。

training status: creating
training status: ready
Model ID: 9d893595-1690-4cf2-a4b1-fbac0fb11909
Status: ready
Training started on: Thu Aug 20 2020 20:27:26 GMT-0700 (Pacific Daylight Time)
Training completed on: Thu Aug 20 2020 20:27:37 GMT-0700 (Pacific Daylight Time)
We have recognized the following fields
The model found field 'field-0'
The model found field 'field-1'
The model found field 'field-2'
The model found field 'field-3'
The model found field 'field-4'
The model found field 'field-5'
The model found field 'field-6'
The model found field 'field-7'
...
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors:
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors:
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors:
...

使用标签训练模型

你还可以通过手动标记训练文档来训练自定义模型。 在某些情况下,使用标签训练可改善效果。 若要使用标签进行训练,需要在 Blob 存储容器中添加特殊标签信息文件 (<filename>.pdf.labels.json) 和训练文档。 文档智能示例标记工具提供了可帮助你创建这些标签文件的 UI。 获得它们后,可以调用“beginTraining”方法,并将“uselabels”参数设置为 true

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

此处是使用 JavaScript SDK 中提供的训练数据训练的模型的输出。 为了提高可读性,此示例结果已截断。

training status: creating
training status: ready
Model ID: 789b1b37-4cc3-4e36-8665-9dde68618072
Status: ready
Training started on: Thu Aug 20 2020 20:30:37 GMT-0700 (Pacific Daylight Time)
Training completed on: Thu Aug 20 2020 20:30:43 GMT-0700 (Pacific Daylight Time)
We have recognized the following fields
The model found field 'CompanyAddress'
The model found field 'CompanyName'
The model found field 'CompanyPhoneNumber'
The model found field 'DatedAs'
...
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
...

使用自定义模型分析表单

本部分演示如何通过你使用自己的表单训练的模型,从自定义模板类型中提取键/值信息和其他内容。

重要

若要实现此方案,必须已训练好一个模型,以便可以将其 ID 传递到方法操作中。 请参阅训练模型部分。

我们使用 beginRecognizeCustomFormsFromUrl 方法。 返回的值是 RecognizedForm 对象的集合。 提交的文档中每个页面都有一个对象。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 beginRecognizeCustomForms)分析本地文件。

status: notStarted
status: succeeded
Forms:
custom:form, page range: [object Object]
Pages:
Page number: 1
Tables
cell (0,0) Invoice Number
cell (0,1) Invoice Date
cell (0,2) Invoice Due Date
cell (0,3) Charges
cell (0,5) VAT ID
cell (1,0) 34278587
cell (1,1) 6/18/2017
cell (1,2) 6/24/2017
cell (1,3) $56,651.49
cell (1,5) PT
Fields:
Field Merchant has value 'Invoice For:' with a confidence score of 0.116
Field CompanyPhoneNumber has value '$56,651.49' with a confidence score of 0.249
Field VendorName has value 'Charges' with a confidence score of 0.145
Field CompanyAddress has value '1 Redmond way Suite 6000 Redmond, WA' with a confidence score of 0.258
Field CompanyName has value 'PT' with a confidence score of 0.245
Field Website has value '99243' with a confidence score of 0.114
Field DatedAs has value 'undefined' with a confidence score of undefined
Field Email has value 'undefined' with a confidence score of undefined
Field PhoneNumber has value 'undefined' with a confidence score of undefined
Field PurchaseOrderNumber has value 'undefined' with a confidence score of undefined
Field Quantity has value 'undefined' with a confidence score of undefined
Field Signature has value 'undefined' with a confidence score of undefined
Field Subtotal has value 'undefined' with a confidence score of undefined
Field Tax has value 'undefined' with a confidence score of undefined
Field Total has value 'undefined' with a confidence score of undefined

管理自定义模型

本部分演示如何管理帐户中存储的自定义模型。 例如,下面的代码在单个函数中执行所有模型管理任务。

获取模型数量

以下代码块获取目前在帐户中的模型的数量。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

获取帐户中模型的列表

以下代码块可提供帐户中可用模型的完整列表,其中包括有关模型的创建时间及其当前状态的信息。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

结果与以下输出类似。

model 0:
{
  modelId: '453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e',
  status: 'invalid',
  trainingStartedOn: 2020-08-20T22:28:52.000Z,
  trainingCompletedOn: 2020-08-20T22:28:53.000Z
}
model 1:
{
  modelId: '628739de-779c-473d-8214-d35c72d3d4f7',
  status: 'ready',
  trainingStartedOn: 2020-08-20T23:16:51.000Z,
  trainingCompletedOn: 2020-08-20T23:16:59.000Z
}
model 2:
{
  modelId: '789b1b37-4cc3-4e36-8665-9dde68618072',
  status: 'ready',
  trainingStartedOn: 2020-08-21T03:30:37.000Z,
  trainingCompletedOn: 2020-08-21T03:30:43.000Z
}
model 3:
{
  modelId: '9d893595-1690-4cf2-a4b1-fbac0fb11909',
  status: 'ready',
  trainingStartedOn: 2020-08-21T03:27:26.000Z,
  trainingCompletedOn: 2020-08-21T03:27:37.000Z
}

按页获取模型 ID 列表

此代码块提供了模型和模型 ID 的分页列表。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

结果与以下输出类似。

model 1: 453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e
model 2: 628739de-779c-473d-8214-d35c72d3d4f7
model 3: 789b1b37-4cc3-4e36-8665-9dde68618072

按 ID 获取模型

下面的函数获取模型 ID 和匹配的模型对象。 默认情况下不会调用此函数。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

从资源帐户中删除模型

还可以通过引用模型的 ID 从帐户中删除该模型。 此函数删除具有给定 ID 的模型。 默认情况下不会调用此函数。

// <snippet_imports>
const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
const fs = require("fs");
// </snippet_imports>

// <snippet_creds>
const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
// </snippet_creds>

// <snippet_auth>
const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));
// </snippet_auth>

// <snippet_getcontent>
async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_getcontent>

// <snippet_receipts>
async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_receipts>

//<snippet_bc>
async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_bc >

//<snippet_invoice>
async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});
//</snippet_invoice >

//<snippet_id>
async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

//</snippet_id >

// <snippet_train>
async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_train>

// <snippet_trainlabels>
async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_trainlabels>

// <snippet_analyze>
async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_analyze>

// <snippet_manage_count>
async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_count>

// <snippet_manage_list>
async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_list>

// <snippet_manage_listids>
async function listModelIds() {
    // using `iter.next()`
    i = 1;
    let iter = trainingClient.listCustomModels();
    let modelItem = await iter.next();
    while (!modelItem.done) {
        console.log(`model ${i++}: ${modelItem.value.modelId}`);
        modelItem = await iter.next();
    }
}
// </snippet_manage_listids>

// <snippet_manage_listpages>
async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});
// </snippet_manage_listpages>

// <snippet_manage_getmodel>
async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}
// </snippet_manage_getmodel>

// <snippet_manage_delete>
async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}
// </snippet_manage_delete>

结果与以下输出类似。

Model with id 789b1b37-4cc3-4e36-8665-9dde68618072 has been deleted

运行应用程序

在项目文件中使用 node 命令运行应用程序。

node index.js

清理资源

如果想要清理并移除 Azure AI 服务订阅,可以删除资源或资源组。 删除资源组同时也会删除与之相关联的任何其他资源。

疑难解答

使用此库时,可以设置以下环境变量来查看调试日志。

export DEBUG=azure*

有关如何启用日志的详细说明,请参阅 @azure/logger package 文档

后续步骤

在此项目中,你使用了文档智能 JavaScript 客户端库以不同的方式来训练模型和分析表单。 接下来,请了解如何创建更好的训练数据集并生成更准确的模型。

重要

本项目面向文档智能 REST API 版本 2.1。

参考文档 | 库源代码 | 包 (PyPi) | 示例

先决条件

  • Azure 订阅 - 创建试用订阅

  • Python 3.x。 你的 Python 安装应包含 pip。 可以通过在命令行上运行 pip --version 来检查是否安装了 pip。 通过安装最新版本的 Python 获取 pip。

  • 包含一组训练数据的 Azure 存储 Blob。 有关整理训练数据集的提示和选项,请参阅生成和训练自定义模型。 对于本教程,可使用示例数据集Train 文件夹下的文件。 下载并提取 sample_data.zip

  • 文档智能资源。 在 Azure 门户中创建文档智能资源。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

设置编程环境

安装客户端库并创建 Python 应用程序。

安装客户端库

  • 安装 Python 后,可以使用以下命令安装最新版本的文档智能客户端库。

    pip install azure-ai-formrecognizer 
    

创建 Python 应用程序

  1. 在编辑器或 IDE 中创建名为 form-recognizer.py 的 Python 应用程序。
  2. 导入以下库。
# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>
  1. 为资源的 Azure 终结点和密钥创建变量。
# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

使用对象模型

在文档智能中,可以创建两种不同的客户端类型。 第一种是 form_recognizer_client,用于查询服务以识别表单域和内容。 第二种是 form_training_client,用于创建和管理可改进识别的自定义模型。

form_recognizer_client 提供以下操作:

  • 使用为了分析自定义表单而训练的自定义模型,来识别表单字段和内容。
  • 无需训练模型即可识别表单内容,包括表格、行和单词。
  • 使用文档智能服务上预先训练的收据模型,识别收据中的常见字段。

form_training_client 提供操作以实现以下目的:

  • 训练自定义模型,以分析在自定义表单中找到的所有字段和值。 请参阅本文中的不使用标签训练模型
  • 训练自定义模型,以分析通过标记自定义表单指定的特定字段和值。 请参阅本文中的使用标签训练模型
  • 管理在帐户中创建的模型。
  • 将自定义模型从一个文档智能资源复制到另一个资源。

注意

还可以使用图形用户界面(例如文档智能标记工具)来训练模型。

对客户端进行身份验证

你将使用前面定义的订阅变量对两个客户端对象进行身份验证。 你将使用 AzureKeyCredential 对象,因此在需要时,你无需创建新的客户端对象即可更新密钥。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

获取用于测试的资产

需要为训练和测试数据添加对 URL 的引用。

  1. 若要检索自定义模型训练数据的 SAS URL,请在 Azure 门户中找到存储资源,然后选择“数据存储>容器”。

  2. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  3. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  4. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

使用示例中包含的示例表单和收据图像(也可以在 GitHub 上找到)。 还可以使用上述步骤获取 blob 存储中单个文档的 SAS URL。

注意

此项目中的代码片段使用通过 URL 访问的远程表单。 如果你要改为处理本地文档,请参阅参考文档中的相关方法和示例

分析布局

可以使用文档智能分析文档中的表格、行和单词,而无需训练模型。 有关布局提取的详细信息,请参阅文档智能布局模型

若要分析位于给定 URL 的文件的内容,请使用 begin_recognize_content_from_url 方法。 返回的值是 FormPage 对象的集合。 提交的文档中每个页面都有一个对象。 下面的代码循环访问这些对象,并输出提取的键/值对和表数据。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 begin_recognize_content)从本地图像获取内容。

Table found on page 1:
Cell text: Invoice Number
Location: [Point(x=0.5075, y=2.8088), Point(x=1.9061, y=2.8088), Point(x=1.9061, y=3.3219), Point(x=0.5075, y=3.3219)]
Confidence score: 1.0

Cell text: Invoice Date
Location: [Point(x=1.9061, y=2.8088), Point(x=3.3074, y=2.8088), Point(x=3.3074, y=3.3219), Point(x=1.9061, y=3.3219)]
Confidence score: 1.0

Cell text: Invoice Due Date
Location: [Point(x=3.3074, y=2.8088), Point(x=4.7074, y=2.8088), Point(x=4.7074, y=3.3219), Point(x=3.3074, y=3.3219)]
Confidence score: 1.0

Cell text: Charges
Location: [Point(x=4.7074, y=2.8088), Point(x=5.386, y=2.8088), Point(x=5.386, y=3.3219), Point(x=4.7074, y=3.3219)]
Confidence score: 1.0
...

分析回执

本部分演示了如何使用预先训练的收据模型分析和提取美国收据中的常见字段。 有关收据分析的详细信息,请参阅文档智能收据模型。 若要分析位于某个 URL 的收据,请使用 begin_recognize_receipts_from_url 方法。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

提示

还可以使用 FormRecognizerClient 方法(例如 begin_recognize_receipts)分析本地收据图像。

ReceiptType: Itemized has confidence 0.659
MerchantName: Contoso Contoso has confidence 0.516
MerchantAddress: 123 Main Street Redmond, WA 98052 has confidence 0.986
MerchantPhoneNumber: None has confidence 0.99
TransactionDate: 2019-06-10 has confidence 0.985
TransactionTime: 13:59:00 has confidence 0.968
Receipt Items:
...Item #1
......Name: 8GB RAM (Black) has confidence 0.916
......TotalPrice: 999.0 has confidence 0.559
...Item #2
......Quantity: None has confidence 0.858
......Name: SurfacePen has confidence 0.858
......TotalPrice: 99.99 has confidence 0.386
Subtotal: 1098.99 has confidence 0.964
Tax: 104.4 has confidence 0.713
Total: 1203.39 has confidence 0.774

分析名片

本部分演示如何使用预先训练的模型分析和提取英文名片中的常见字段。 有关名片分析的详细信息,请参阅文档智能名片模型

若要分析位于某个 URL 的名片,请使用 begin_recognize_business_cards_from_url 方法。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_bc>
bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg"

poller = form_recognizer_client.begin_recognize_business_cards_from_url(bcUrl)
business_cards = poller.result()

for idx, business_card in enumerate(business_cards):
    print("--------Recognizing business card #{}--------".format(idx+1))
    contact_names = business_card.fields.get("ContactNames")
    if contact_names:
        for contact_name in contact_names.value:
            print("Contact First Name: {} has confidence: {}".format(
                contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence
            ))
            print("Contact Last Name: {} has confidence: {}".format(
                contact_name.value["LastName"].value, contact_name.value["LastName"].confidence
            ))
    company_names = business_card.fields.get("CompanyNames")
    if company_names:
        for company_name in company_names.value:
            print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence))
    departments = business_card.fields.get("Departments")
    if departments:
        for department in departments.value:
            print("Department: {} has confidence: {}".format(department.value, department.confidence))
    job_titles = business_card.fields.get("JobTitles")
    if job_titles:
        for job_title in job_titles.value:
            print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence))
    emails = business_card.fields.get("Emails")
    if emails:
        for email in emails.value:
            print("Email: {} has confidence: {}".format(email.value, email.confidence))
    websites = business_card.fields.get("Websites")
    if websites:
        for website in websites.value:
            print("Website: {} has confidence: {}".format(website.value, website.confidence))
    addresses = business_card.fields.get("Addresses")
    if addresses:
        for address in addresses.value:
            print("Address: {} has confidence: {}".format(address.value, address.confidence))
    mobile_phones = business_card.fields.get("MobilePhones")
    if mobile_phones:
        for phone in mobile_phones.value:
            print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence))
    faxes = business_card.fields.get("Faxes")
    if faxes:
        for fax in faxes.value:
            print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence))
    work_phones = business_card.fields.get("WorkPhones")
    if work_phones:
        for work_phone in work_phones.value:
            print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence))
    other_phones = business_card.fields.get("OtherPhones")
    if other_phones:
        for other_phone in other_phones.value:
            print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
# </snippet_bc>

# <snippet_invoice>
invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png"

poller = form_recognizer_client.begin_recognize_invoices_from_url(invoiceUrl)
invoices = poller.result()

for idx, invoice in enumerate(invoices):
    print("--------Recognizing invoice #{}--------".format(idx+1))
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence))
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence))
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence))
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence))
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence))
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence))
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence))
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence))
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence))
# </snippet_invoice>


# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_with_labels_model_id = model.model_id

print("Model ID: {}".format(trained_with_labels_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>
poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

# <snippet_id>
idURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"

for idx, id_document in enumerate(id_documents):
    print("--------Recognizing ID document #{}--------".format(idx+1))
    first_name = id_document.fields.get("FirstName")
    if first_name:
        print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence))
    last_name = id_document.fields.get("LastName")
    if last_name:
        print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence))
    document_number = id_document.fields.get("DocumentNumber")
    if document_number:
        print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence))
    dob = id_document.fields.get("DateOfBirth")
    if dob:
        print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence))
    doe = id_document.fields.get("DateOfExpiration")
    if doe:
        print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence))
    sex = id_document.fields.get("Sex")
    if sex:
        print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
    address = id_document.fields.get("Address")
    if address:
        print("Address: {} has confidence: {}".format(address.value, address.confidence))
    country_region = id_document.fields.get("CountryRegion")
    if country_region:
        print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence))
    region = id_document.fields.get("Region")
    if region:
        print("Region: {} has confidence: {}".format(region.value, region.confidence))
# </snippet_id>

提示

还可以使用 FormRecognizerClient 方法(例如 begin_recognize_business_cards)分析本地名片图像。

分析发票

本部分演示了如何使用预先训练的模型分析和提取销售发票中的常见字段。 有关发票分析的详细信息,请参阅文档智能发票模型

若要分析位于某个 URL 的发票,请使用 begin_recognize_invoices_from_url 方法。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_bc>
bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg"

poller = form_recognizer_client.begin_recognize_business_cards_from_url(bcUrl)
business_cards = poller.result()

for idx, business_card in enumerate(business_cards):
    print("--------Recognizing business card #{}--------".format(idx+1))
    contact_names = business_card.fields.get("ContactNames")
    if contact_names:
        for contact_name in contact_names.value:
            print("Contact First Name: {} has confidence: {}".format(
                contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence
            ))
            print("Contact Last Name: {} has confidence: {}".format(
                contact_name.value["LastName"].value, contact_name.value["LastName"].confidence
            ))
    company_names = business_card.fields.get("CompanyNames")
    if company_names:
        for company_name in company_names.value:
            print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence))
    departments = business_card.fields.get("Departments")
    if departments:
        for department in departments.value:
            print("Department: {} has confidence: {}".format(department.value, department.confidence))
    job_titles = business_card.fields.get("JobTitles")
    if job_titles:
        for job_title in job_titles.value:
            print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence))
    emails = business_card.fields.get("Emails")
    if emails:
        for email in emails.value:
            print("Email: {} has confidence: {}".format(email.value, email.confidence))
    websites = business_card.fields.get("Websites")
    if websites:
        for website in websites.value:
            print("Website: {} has confidence: {}".format(website.value, website.confidence))
    addresses = business_card.fields.get("Addresses")
    if addresses:
        for address in addresses.value:
            print("Address: {} has confidence: {}".format(address.value, address.confidence))
    mobile_phones = business_card.fields.get("MobilePhones")
    if mobile_phones:
        for phone in mobile_phones.value:
            print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence))
    faxes = business_card.fields.get("Faxes")
    if faxes:
        for fax in faxes.value:
            print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence))
    work_phones = business_card.fields.get("WorkPhones")
    if work_phones:
        for work_phone in work_phones.value:
            print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence))
    other_phones = business_card.fields.get("OtherPhones")
    if other_phones:
        for other_phone in other_phones.value:
            print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
# </snippet_bc>

# <snippet_invoice>
invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png"

poller = form_recognizer_client.begin_recognize_invoices_from_url(invoiceUrl)
invoices = poller.result()

for idx, invoice in enumerate(invoices):
    print("--------Recognizing invoice #{}--------".format(idx+1))
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence))
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence))
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence))
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence))
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence))
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence))
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence))
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence))
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence))
# </snippet_invoice>


# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_with_labels_model_id = model.model_id

print("Model ID: {}".format(trained_with_labels_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>
poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

# <snippet_id>
idURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"

for idx, id_document in enumerate(id_documents):
    print("--------Recognizing ID document #{}--------".format(idx+1))
    first_name = id_document.fields.get("FirstName")
    if first_name:
        print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence))
    last_name = id_document.fields.get("LastName")
    if last_name:
        print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence))
    document_number = id_document.fields.get("DocumentNumber")
    if document_number:
        print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence))
    dob = id_document.fields.get("DateOfBirth")
    if dob:
        print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence))
    doe = id_document.fields.get("DateOfExpiration")
    if doe:
        print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence))
    sex = id_document.fields.get("Sex")
    if sex:
        print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
    address = id_document.fields.get("Address")
    if address:
        print("Address: {} has confidence: {}".format(address.value, address.confidence))
    country_region = id_document.fields.get("CountryRegion")
    if country_region:
        print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence))
    region = id_document.fields.get("Region")
    if region:
        print("Region: {} has confidence: {}".format(region.value, region.confidence))
# </snippet_id>

提示

还可以使用 FormRecognizerClient 方法(例如 begin_recognize_invoices)分析本地发票图像。

分析 ID 文档

本部分演示了如何使用文档智能预生成的 ID 模型来分析和提取政府颁发的身份文档(包括全球护照和美国驾照)中的关键信息。 有关 ID 文档分析的详细信息,请参阅文档智能 ID 文档模型

若要从 URL 分析 ID 文档,请使用 begin_recognize_id_documents_from_url 方法。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_bc>
bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg"

poller = form_recognizer_client.begin_recognize_business_cards_from_url(bcUrl)
business_cards = poller.result()

for idx, business_card in enumerate(business_cards):
    print("--------Recognizing business card #{}--------".format(idx+1))
    contact_names = business_card.fields.get("ContactNames")
    if contact_names:
        for contact_name in contact_names.value:
            print("Contact First Name: {} has confidence: {}".format(
                contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence
            ))
            print("Contact Last Name: {} has confidence: {}".format(
                contact_name.value["LastName"].value, contact_name.value["LastName"].confidence
            ))
    company_names = business_card.fields.get("CompanyNames")
    if company_names:
        for company_name in company_names.value:
            print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence))
    departments = business_card.fields.get("Departments")
    if departments:
        for department in departments.value:
            print("Department: {} has confidence: {}".format(department.value, department.confidence))
    job_titles = business_card.fields.get("JobTitles")
    if job_titles:
        for job_title in job_titles.value:
            print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence))
    emails = business_card.fields.get("Emails")
    if emails:
        for email in emails.value:
            print("Email: {} has confidence: {}".format(email.value, email.confidence))
    websites = business_card.fields.get("Websites")
    if websites:
        for website in websites.value:
            print("Website: {} has confidence: {}".format(website.value, website.confidence))
    addresses = business_card.fields.get("Addresses")
    if addresses:
        for address in addresses.value:
            print("Address: {} has confidence: {}".format(address.value, address.confidence))
    mobile_phones = business_card.fields.get("MobilePhones")
    if mobile_phones:
        for phone in mobile_phones.value:
            print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence))
    faxes = business_card.fields.get("Faxes")
    if faxes:
        for fax in faxes.value:
            print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence))
    work_phones = business_card.fields.get("WorkPhones")
    if work_phones:
        for work_phone in work_phones.value:
            print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence))
    other_phones = business_card.fields.get("OtherPhones")
    if other_phones:
        for other_phone in other_phones.value:
            print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
# </snippet_bc>

# <snippet_invoice>
invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png"

poller = form_recognizer_client.begin_recognize_invoices_from_url(invoiceUrl)
invoices = poller.result()

for idx, invoice in enumerate(invoices):
    print("--------Recognizing invoice #{}--------".format(idx+1))
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence))
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence))
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence))
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence))
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence))
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence))
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence))
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence))
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence))
# </snippet_invoice>


# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_with_labels_model_id = model.model_id

print("Model ID: {}".format(trained_with_labels_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>
poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

# <snippet_id>
idURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"

for idx, id_document in enumerate(id_documents):
    print("--------Recognizing ID document #{}--------".format(idx+1))
    first_name = id_document.fields.get("FirstName")
    if first_name:
        print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence))
    last_name = id_document.fields.get("LastName")
    if last_name:
        print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence))
    document_number = id_document.fields.get("DocumentNumber")
    if document_number:
        print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence))
    dob = id_document.fields.get("DateOfBirth")
    if dob:
        print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence))
    doe = id_document.fields.get("DateOfExpiration")
    if doe:
        print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence))
    sex = id_document.fields.get("Sex")
    if sex:
        print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
    address = id_document.fields.get("Address")
    if address:
        print("Address: {} has confidence: {}".format(address.value, address.confidence))
    country_region = id_document.fields.get("CountryRegion")
    if country_region:
        print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence))
    region = id_document.fields.get("Region")
    if region:
        print("Region: {} has confidence: {}".format(region.value, region.confidence))
# </snippet_id>

提示

还可使用 FormRecognizerClient 方法(例如 begin_recognize_identity_documents)分析 ID 文档图像。

训练自定义模型

本部分演示如何使用自己的数据训练模型。 训练的模型可以输出结构化数据,其中包含原始文档中的键/值关系。 训练模型后,可对其进行测试和重新训练,并最终使用它来根据需求提取其他表单中的数据。

注意

你还可以使用图形用户界面(例如文档智能示例标记工具)来训练模型。

不使用标签训练模型

训练自定义模型可分析在自定义表单中找到的所有字段和值,无需手动标记训练文档。

下面的代码借助训练客户端和 begin_training 函数,使用给定文档集训练模型。 返回的 CustomFormModel 对象包含该模型可以分析的表单类型以及它可以从每种表单类型中提取的字段的相关信息。 下面的代码块将此信息输出到控制台。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

此处是使用 Python SDK 中提供的训练数据训练的模型的输出。

Model ID: 628739de-779c-473d-8214-d35c72d3d4f7
Status: ready
Training started on: 2020-08-20 23:16:51+00:00
Training completed on: 2020-08-20 23:16:59+00:00

Recognized fields:
The submodel with form type 'form-0' has recognized the following fields: Additional Notes:, Address:, Company Name:, Company Phone:, Dated As:, Details, Email:, Hero Limited, Name:, Phone:, Purchase Order, Purchase Order #:, Quantity, SUBTOTAL, Seattle, WA 93849 Phone:, Shipped From, Shipped To, TAX, TOTAL, Total, Unit Price, Vendor Name:, Website:
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_4.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_5.jpg
Document status: succeeded
Document page count: 1
Document errors: []

使用标签训练模型

你还可以通过手动标记训练文档来训练自定义模型。 在某些情况下,使用标签训练可改善效果。 返回的 CustomFormModel 指示模型可以提取的字段,以及每个字段中的估计准确度。 下面的代码块将此信息输出到控制台。

重要

若要使用标签进行训练,需要在 Blob 存储容器中添加特殊标签信息文件 (<filename>.pdf.labels.json) 和训练文档。 文档智能示例标记工具提供了可帮助你创建这些标签文件的 UI。 获得它们后,可以调用“begin_training”函数,并将“use_training_labels”参数设置为 true

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

此处是使用 Python SDK 中提供的训练数据训练的模型的输出。

Model ID: ae636292-0b14-4e26-81a7-a0bfcbaf7c91

Status: ready
Training started on: 2020-08-20 23:20:56+00:00
Training completed on: 2020-08-20 23:20:57+00:00

Recognized fields:
The submodel with form type 'form-ae636292-0b14-4e26-81a7-a0bfcbaf7c91' has recognized the following fields: CompanyAddress, CompanyName, CompanyPhoneNumber, DatedAs, Email, Merchant, PhoneNumber, PurchaseOrderNumber, Quantity, Signature, Subtotal, Tax, Total, VendorName, Website
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_4.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_5.jpg
Document status: succeeded
Document page count: 1
Document errors: []

使用自定义模型分析表单

本部分演示如何通过你使用自己的表单训练的模型,从自定义模板类型中提取键/值信息和其他内容。

重要

若要实现此方案,必须已训练好一个模型,以便可以将其 ID 传递到方法操作中。 请参阅训练模型部分。

我们使用 begin_recognize_custom_forms_from_url 方法。 返回的值是 RecognizedForm 对象的集合。 提交的文档中每个页面都有一个对象。 以下代码将分析结果输出到控制台。 它将输出每个识别的字段和相应的值以及置信度分数。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

提示

还可分析本地映像。 请参阅 FormRecognizerClient 方法,例如 begin_recognize_custom_forms。 或者,请参阅 GitHub 上的示例代码,了解涉及本地图像的方案。

前面示例中的模型呈现以下输出:

Form type: form-ae636292-0b14-4e26-81a7-a0bfcbaf7c91
Field 'Merchant' has label 'Merchant' with value 'Invoice For:' and a confidence score of 0.116
Field 'CompanyAddress' has label 'CompanyAddress' with value '1 Redmond way Suite 6000 Redmond, WA' and a confidence score of 0.258
Field 'Website' has label 'Website' with value '99243' and a confidence score of 0.114
Field 'VendorName' has label 'VendorName' with value 'Charges' and a confidence score of 0.145
Field 'CompanyPhoneNumber' has label 'CompanyPhoneNumber' with value '$56,651.49' and a confidence score of 0.249
Field 'CompanyName' has label 'CompanyName' with value 'PT' and a confidence score of 0.245
Field 'DatedAs' has label 'DatedAs' with value 'None' and a confidence score of None
Field 'Email' has label 'Email' with value 'None' and a confidence score of None
Field 'PhoneNumber' has label 'PhoneNumber' with value 'None' and a confidence score of None
Field 'PurchaseOrderNumber' has label 'PurchaseOrderNumber' with value 'None' and a confidence score of None
Field 'Quantity' has label 'Quantity' with value 'None' and a confidence score of None
Field 'Signature' has label 'Signature' with value 'None' and a confidence score of None
Field 'Subtotal' has label 'Subtotal' with value 'None' and a confidence score of None
Field 'Tax' has label 'Tax' with value 'None' and a confidence score of None
Field 'Total' has label 'Total' with value 'None' and a confidence score of None

管理自定义模型

本部分演示如何管理帐户中存储的自定义模型。

检查 FormRecognizer 资源帐户中的模型数

下面的代码块会检查文档智能帐户中保存的模型数,并将其与帐户限制进行比较。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

结果与以下输出类似。

Our account has 5 custom models, and we can have at most 5000 custom models

列出资源帐户中当前存储的模型

下面的代码块会列出帐户中的当前模型,并将这些模型的详细信息输出到控制台。 它还保存对第一个模型的引用。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

结果与以下输出类似。

此处是测试帐户的示例输出。

We have models with the following ids:
453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e
628739de-779c-473d-8214-d35c72d3d4f7
ae636292-0b14-4e26-81a7-a0bfcbaf7c91
b4b5df77-8538-4ffb-a996-f67158ecd305
c6309148-6b64-4fef-aea0-d39521452699

使用模型 ID 获取特定模型

下面的代码块使用上一节中保存的模型 ID 并使用它来检索有关模型的详细信息。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

此处是在前面的示例中创建的自定义模型的示例输出。

Model ID: ae636292-0b14-4e26-81a7-a0bfcbaf7c91
Status: ready
Training started on: 2020-08-20 23:20:56+00:00
Training completed on: 2020-08-20 23:20:57+00:00

从资源帐户中删除模型

还可以通过引用模型的 ID 从帐户中删除该模型。 此代码删除在上一节中使用的模型。

# <snippet_imports>
import os
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.formrecognizer import FormRecognizerClient
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential
# </snippet_imports>

# <snippet_creds>
endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
# </snippet_creds>

# <snippet_auth>
form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
# </snippet_auth>

# <snippet_getcontent>
formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))
# </snippet_getcontent>

# <snippet_receipts>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
# </snippet_receipts>

# <snippet_train>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_train>

# <snippet_trainlabels>
# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))
# </snippet_trainlabels>

# <snippet_analyze>

poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))
# </snippet_analyze>

# <snippet_manage_count>
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
# </snippet_manage_count>

# <snippet_manage_list>
# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)
# </snippet_manage_list>

# <snippet_manage_getmodel>
custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
# </snippet_manage_getmodel>

# <snippet_manage_delete>
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
# </snippet_manage_delete>

运行应用程序

使用 python 命令运行应用程序:

python form-recognizer.py

清理资源

如果想要清理并移除 Azure AI 服务订阅,可以删除资源或资源组。 删除资源组同时也会删除与之相关联的任何其他资源。

疑难解答

这些问题可能有助于进行故障排除。

常规

文档智能客户端库将引发在 Azure Core 中定义的异常。

日志记录

此库使用标准日志记录库进行日志记录。 有关 HTTP 会话(URL、标头等)的基本信息记录在信息级别。

在客户端上使用 logging_enable 关键字参数可启用详细的调试级别日志记录(包括请求/响应正文和未编辑的标头):

# <snippet_logging>
import sys
import logging
from azure.ai.formrecognizer import FormRecognizerClient
from azure.core.credentials import AzureKeyCredential

# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
credential = AzureKeyCredential("PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE")

# This client will log detailed information about its HTTP sessions, at DEBUG level
form_recognizer_client = FormRecognizerClient(endpoint, credential, logging_enable=True)
# </snippet_logging>

# <snippet_example>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"
poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl, logging_enable=True)
# </snippet_example>

同样,即使没有为客户端启用详细日志记录,logging_enable 也可以为单个操作启用:

# <snippet_logging>
import sys
import logging
from azure.ai.formrecognizer import FormRecognizerClient
from azure.core.credentials import AzureKeyCredential

# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
credential = AzureKeyCredential("PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE")

# This client will log detailed information about its HTTP sessions, at DEBUG level
form_recognizer_client = FormRecognizerClient(endpoint, credential, logging_enable=True)
# </snippet_logging>

# <snippet_example>
receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"
poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl, logging_enable=True)
# </snippet_example>

GitHub 上的 REST 示例

后续步骤

在此项目中,你使用了文档智能 Python 客户端库以不同的方式来训练模型和分析表单。 接下来,请了解如何创建更好的训练数据集并生成更准确的模型。

注意

本项目面向使用 cURL 执行 REST API 调用的 Azure AI 文档智能 API 版本 2.1。

文档智能 REST API | Azure REST API 参考

先决条件

  • Azure 订阅 - 创建试用订阅

  • 已安装 cURL 命令行工具。 Windows 10 和 Windows 11 随附 cURL 副本。 在命令提示符窗口中输入以下 cURL 命令。 如果显示帮助选项,则 cURL 已安装在 Windows 环境中。

    curl -help
    

    如果未安装 cURL,可以在此处获取:

  • PowerShell 6.0 及以上版本,或类似的命令行应用程序。

  • 包含一组训练数据的 Azure 存储 Blob。 有关整理训练数据集的提示和选项,请参阅生成和训练自定义模型。 你可以使用示例数据集Train 文件夹下的文件。 下载并提取 sample_data.zip

  • Azure AI 服务或文档智能资源。 创建“单一服务多个服务。 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

  • 从创建的资源获取密钥和终结点,以便将应用程序连接到文档智能服务。

    1. 部署资源后,选择“转到资源”。
    2. 在左侧导航菜单中,选择“密钥和终结点”。
    3. 复制其中一个密钥和终结点,稍后你将在本快速入门中使用它们。

    该屏幕截图显示了 Azure 门户中密钥和终结点的位置。

  • 收据图像的 URL。 可以使用示例图像

  • 名片图像的 URL。 可以使用示例图像

  • 发票图像的 URL。 可以使用示例文档

  • ID 文档图像的 URL。 可以使用一个示例图像

分析布局

可以使用文档智能来分析并提取文档中的表格、选定内容标记、文本和结构,而无需训练模型。 有关布局提取的详细信息,请参阅文档智能布局模型

运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <your-document-url> 替换为示例 URL 中的一个。
curl -v -i POST "https://<endpoint>/formrecognizer/v2.1/layout/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{​​​​​​​'source': '<your-document-url>'}​​​​​​​​"

你将收到 202 (Success) 响应,其中包含只读“Operation-Location”标头。 此标头的值包含 resultId,可以查询该 ID,从而使用包含你同一资源订阅密钥的 GET 请求来获取异步操作的状态并检索结果:

https://cognitiveservice/formrecognizer/v2.1/layout/analyzeResults/<resultId>

在以下示例中,analyzeResults/ 后面作为 URL 一部分的字符串就是结果 ID。

https://cognitiveservice/formrecognizer/v2/layout/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

获取布局结果

调用分析布局 API 后,轮询获取分析布局结果 API,以便获取操作状态和已提取的数据。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <resultId> 替换为上一步中的结果 ID。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/layout/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含 JSON 内容的 200 (success) 响应。

请查看以下发票图像及其相应的 JSON 输出。

  • "readResults" 节点包含每一行文本,以及其各自在页面上的边界框位置。
  • selectionMarks 节点显示每个选择标记(复选框、单选按钮)以及其状态是 selected 还是 unselected
  • "pageResults" 部分包含提取的表。 对于每个表,将会提取文本、行和列索引、行和列跨距、边界框等。

包含表的 Contoso 项目声明文档的图片。

为了简单起见,已缩短此响应正文输出。 请参阅 GitHub 上的完整示例输出

{
    "status": "succeeded",
    "createdDateTime": "2020-08-20T20:40:50Z",
    "lastUpdatedDateTime": "2020-08-20T20:40:55Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [
            {
                "page": 1,
                "angle": 0,
                "width": 8.5,
                "height": 11,
                "unit": "inch",
                "lines": [
                    {
                        "boundingBox": [
                            0.5826,
                            0.4411,
                            2.3387,
                            0.4411,
                            2.3387,
                            0.7969,
                            0.5826,
                            0.7969
                        ],
                        "text": "Contoso, Ltd.",
                        "words": [
                            {
                                "boundingBox": [
                                    0.5826,
                                    0.4411,
                                    1.744,
                                    0.4411,
                                    1.744,
                                    0.7969,
                                    0.5826,
                                    0.7969
                                ],
                                "text": "Contoso,",
                                "confidence": 1
                            },
                            {
                                "boundingBox": [
                                    1.8448,
                                    0.4446,
                                    2.3387,
                                    0.4446,
                                    2.3387,
                                    0.7631,
                                    1.8448,
                                    0.7631
                                ],
                                "text": "Ltd.",
                                "confidence": 1
                            }
                        ]
                    },
                    ...
                        ]
                    }
                ],
                "selectionMarks": [
                    {
                        "boundingBox": [
                            3.9737,
                            3.7475,
                            4.1693,
                            3.7475,
                            4.1693,
                            3.9428,
                            3.9737,
                            3.9428
                        ],
                        "confidence": 0.989,
                        "state": "selected"
                    },
                    ...
                ]
            }
        ],
        "pageResults": [
            {
                "page": 1,
                "tables": [
                    {
                        "rows": 5,
                        "columns": 5,
                        "cells": [
                            {
                                "rowIndex": 0,
                                "columnIndex": 0,
                                "text": "Training Date",
                                "boundingBox": [
                                    0.5133,
                                    4.2167,
                                    1.7567,
                                    4.2167,
                                    1.7567,
                                    4.4492,
                                    0.5133,
                                    4.4492
                                ],
                                "elements": [
                                    "#/readResults/0/lines/12/words/0",
                                    "#/readResults/0/lines/12/words/1"
                                ]
                            },
                            ...
                        ]
                    },
                    ...
                ]
            }
        ]
    }
}

分析回执

本部分演示如何使用预先训练的收据模型分析和提取美国收据中的常见字段。 有关收据分析的详细信息,请参阅文档智能收据模型。 若要开始分析收据,可使用 cURL 命令调用分析收据 API。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <你的收据 URL> 替换为某个收据图像的 URL 地址。
  3. <密钥>替换为在上一步中复制的密钥。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/receipt/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your receipt URL>'}"

你将收到 202 (Success) 响应,其中包含“Operation-Location”标头。 此头的值包含一个可用于查询异步操作状态和获取结果的结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>

在以下示例中,operations/ 后面的字符串就是结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/operations/aeb13e15-555d-4f02-ba47-04d89b487ed5

获取收据结果

调用了“分析回执”API 后,可以调用获取分析收据结果 API,以获取操作状态和已提取的数据。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <resultId> 替换为上一步中的结果 ID。
  3. <密钥>替换为你的密钥。
curl -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含 JSON 输出的 200 (Success) 响应。 第一个字段 "status" 指示操作的状态。 如果操作未完成,"status" 的值为 "running""notStarted",你应当采用手动方式或通过脚本再次调用该 API。 我们建议两次调用间隔一秒或更长时间。

"readResults" 节点包含所有已识别的文本(如果将可选“includeTextDetails”参数设置为 true)。 响应按页,然后按行,然后按单个单词来组织文本。 "documentResults" 节点包含模型发现的特定于回执的值。 你将在 "documentResults" 节点中找到有用的键/值对,例如税款、总计、商家地址等。

请查看以下回执图像及其相应的 JSON 输出。

显示来自 Contoso 的打印的收据的照片。

为了简单起见,已缩短此响应正文输出。 请参阅 GitHub 上的完整示例输出

{
  "status":"succeeded",
  "createdDateTime":"2019-12-17T04:11:24Z",
  "lastUpdatedDateTime":"2019-12-17T04:11:32Z",
  "analyzeResult":{
    "version":"2.1.0",
    "readResults":[
      {
        "page":1,
        "angle":0.6893,
        "width":1688,
        "height":3000,
        "unit":"pixel",
        "language":"en",
        "lines":[
          {
            "text":"Contoso",
            "boundingBox":[
              635,
              510,
              1086,
              461,
              1098,
              558,
              643,
              604
            ],
            "words":[
              {
                "text":"Contoso",
                "boundingBox":[
                  639,
                  510,
                  1087,
                  461,
                  1098,
                  551,
                  646,
                  604
                ],
                "confidence":0.955
              }
            ]
          },
          ...
        ]
      }
    ],
    "documentResults":[
      {
        "docType":"prebuilt:receipt",
        "pageRange":[
          1,
          1
        ],
        "fields":{
          "ReceiptType":{
            "type":"string",
            "valueString":"Itemized",
            "confidence":0.692
          },
          "MerchantName":{
            "type":"string",
            "valueString":"Contoso Contoso",
            "text":"Contoso Contoso",
            "boundingBox":[
              378.2,
              292.4,
              1117.7,
              468.3,
              1035.7,
              812.7,
              296.3,
              636.8
            ],
            "page":1,
            "confidence":0.613,
            "elements":[
              "#/readResults/0/lines/0/words/0",
              "#/readResults/0/lines/1/words/0"
            ]
          },
          "MerchantAddress":{
            "type":"string",
            "valueString":"123 Main Street Redmond, WA 98052",
            "text":"123 Main Street Redmond, WA 98052",
            "boundingBox":[
              302,
              675.8,
              848.1,
              793.7,
              809.9,
              970.4,
              263.9,
              852.5
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/2/words/0",
              "#/readResults/0/lines/2/words/1",
              "#/readResults/0/lines/2/words/2",
              "#/readResults/0/lines/3/words/0",
              "#/readResults/0/lines/3/words/1",
              "#/readResults/0/lines/3/words/2"
            ]
          },
          "MerchantPhoneNumber":{
            "type":"phoneNumber",
            "valuePhoneNumber":"+19876543210",
            "text":"987-654-3210",
            "boundingBox":[
              278,
              1004,
              656.3,
              1054.7,
              646.8,
              1125.3,
              268.5,
              1074.7
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/4/words/0"
            ]
          },
          "TransactionDate":{
            "type":"date",
            "valueDate":"2019-06-10",
            "text":"6/10/2019",
            "boundingBox":[
              265.1,
              1228.4,
              525,
              1247,
              518.9,
              1332.1,
              259,
              1313.5
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/5/words/0"
            ]
          },
          "TransactionTime":{
            "type":"time",
            "valueTime":"13:59:00",
            "text":"13:59",
            "boundingBox":[
              541,
              1248,
              677.3,
              1261.5,
              668.9,
              1346.5,
              532.6,
              1333
            ],
            "page":1,
            "confidence":0.977,
            "elements":[
              "#/readResults/0/lines/5/words/1"
            ]
          },
          "Items":{
            "type":"array",
            "valueArray":[
              {
                "type":"object",
                "valueObject":{
                  "Quantity":{
                    "type":"number",
                    "text":"1",
                    "boundingBox":[
                      245.1,
                      1581.5,
                      300.9,
                      1585.1,
                      295,
                      1676,
                      239.2,
                      1672.4
                    ],
                    "page":1,
                    "confidence":0.92,
                    "elements":[
                      "#/readResults/0/lines/7/words/0"
                    ]
                  },
                  "Name":{
                    "type":"string",
                    "valueString":"Cappuccino",
                    "text":"Cappuccino",
                    "boundingBox":[
                      322,
                      1586,
                      654.2,
                      1601.1,
                      650,
                      1693,
                      317.8,
                      1678
                    ],
                    "page":1,
                    "confidence":0.923,
                    "elements":[
                      "#/readResults/0/lines/7/words/1"
                    ]
                  },
                  "TotalPrice":{
                    "type":"number",
                    "valueNumber":2.2,
                    "text":"$2.20",
                    "boundingBox":[
                      1107.7,
                      1584,
                      1263,
                      1574,
                      1268.3,
                      1656,
                      1113,
                      1666
                    ],
                    "page":1,
                    "confidence":0.918,
                    "elements":[
                      "#/readResults/0/lines/8/words/0"
                    ]
                  }
                }
              },
              ...
            ]
          },
          "Subtotal":{
            "type":"number",
            "valueNumber":11.7,
            "text":"11.70",
            "boundingBox":[
              1146,
              2221,
              1297.3,
              2223,
              1296,
              2319,
              1144.7,
              2317
            ],
            "page":1,
            "confidence":0.955,
            "elements":[
              "#/readResults/0/lines/13/words/1"
            ]
          },
          "Tax":{
            "type":"number",
            "valueNumber":1.17,
            "text":"1.17",
            "boundingBox":[
              1190,
              2359,
              1304,
              2359,
              1304,
              2456,
              1190,
              2456
            ],
            "page":1,
            "confidence":0.979,
            "elements":[
              "#/readResults/0/lines/15/words/1"
            ]
          },
          "Tip":{
            "type":"number",
            "valueNumber":1.63,
            "text":"1.63",
            "boundingBox":[
              1094,
              2479,
              1267.7,
              2485,
              1264,
              2591,
              1090.3,
              2585
            ],
            "page":1,
            "confidence":0.941,
            "elements":[
              "#/readResults/0/lines/17/words/1"
            ]
          },
          "Total":{
            "type":"number",
            "valueNumber":14.5,
            "text":"$14.50",
            "boundingBox":[
              1034.2,
              2617,
              1387.5,
              2638.2,
              1380,
              2763,
              1026.7,
              2741.8
            ],
            "page":1,
            "confidence":0.985,
            "elements":[
              "#/readResults/0/lines/19/words/0"
            ]
          }
        }
      }
    ]
  }
}

分析名片

本部分演示如何使用预先训练的模型分析和提取英文名片中的常见字段。 有关名片分析的详细信息,请参阅文档智能名片模型。 若要开始分析名片,请使用 cURL 命令调用分析名片 API。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <你的名片 URL> 替换为某个收据图像的 URL 地址。
  3. <密钥>替换为在上一步中复制的密钥。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/businessCard/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your receipt URL>'}"

你将收到 202 (Success) 响应,其中包含“Operation-Location”标头。 此头的值包含一个可用于查询异步操作状态和获取结果的结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/<resultId>

在以下示例中,analyzeResults/ 后面作为 URL 一部分的字符串就是结果 ID。

https://cognitiveservice/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

调用分析名片 API 后,请调用获取分析名片结果 API,以获取操作状态和已提取的数据。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <resultId> 替换为上一步中的结果 ID。
  3. <密钥>替换为你的密钥。
curl -v -X GET https://<endpoint>/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/<resultId>"
-H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含 JSON 输出的 200 (Success) 响应。

"readResults" 节点包含所有已识别的文本。 响应按页,然后按行,然后按单个单词来组织文本。 "documentResults" 节点包含模型发现的特定于名片的值。 在 "documentResults" 节点中,你可以找到有用的联系人信息,如公司名、名字、姓氏、电话号码等。

显示来自名为 Contoso 的公司的名片的照片。

为便于阅读,已缩短此示例 JSON 输出。 请参阅 GitHub 上的完整示例输出

{
    "status": "succeeded",
    "createdDateTime":"2021-02-09T18:14:05Z",
    "lastUpdatedDateTime":"2021-02-09T18:14:10Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [
            {
             "page":1,
             "angle":-16.6836,
             "width":4032,
             "height":3024,
             "unit":"pixel"
          }
        ],
        "documentResults": [
            {
                "docType": "prebuilt:businesscard",
                "pageRange": [
                    1,
                    1
                ],
                "fields": {
                    "ContactNames": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "object",
                                "valueObject": {
                                    "FirstName": {
                                        "type": "string",
                                        "valueString": "Avery",
                                        "text": "Avery",
                                        "boundingBox": [
                                            703,
                                            1096,
                                            1134,
                                            989,
                                            1165,
                                            1109,
                                            733,
                                            1206
                                        ],
                                        "page": 1
                                },
                                "text": "Dr. Avery Smith",
                                "boundingBox": [
                                    419.3,
                                    1154.6,
                                    1589.6,
                                    877.9,
                                    1618.9,
                                    1001.7,
                                    448.6,
                                    1278.4
                                ],
                                "confidence": 0.993
                            }
                        ]
                    },
                    "Emails": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "string",
                                "valueString": "avery.smith@contoso.com",
                                "text": "avery.smith@contoso.com",
                                "boundingBox": [
                                    2107,
                                    934,
                                    2917,
                                    696,
                                    2935,
                                    764,
                                    2126,
                                    995
                                ],
                                "page": 1,
                                "confidence": 0.99
                            }
                        ]
                    },
                    "Websites": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "string",
                                "valueString": "https://www.contoso.com/",
                                "text": "https://www.contoso.com/",
                                "boundingBox": [
                                    2121,
                                    1002,
                                    2992,
                                    755,
                                    3014,
                                    826,
                                    2143,
                                    1077
                                ],
                                "page": 1,
                                "confidence": 0.995
                            }
                        ]
                    }
                }
            }
        ]
    }
}

脚本会向控制台输出响应,直到“分析名片”操作完成。

分析发票

可以使用文档智能从给定的发票文档提取字段文本和语义值。 若要开始分析发票,请使用 cURL 命令。 有关发票分析的详细信息,请参阅发票概念指南。 若要开始分析账单,请使用 cURL 命令调用分析账单 API。

运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <你的发票 URL> 替换为账单文档的 URL 地址。
  3. <密钥>替换为你的密钥。
curl -v -i POST https://<endpoint>/formrecognizer/v2.1/prebuilt/invoice/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{​​​​​​​'source': '<your invoice URL>'}​​​​​​​​"

你将收到 202 (Success) 响应,其中包含“Operation-Location”标头。 此头的值包含一个可用于查询异步操作状态和获取结果的结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>

在以下示例中,analyzeResults/ 后面作为 URL 一部分的字符串就是结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/invoice/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

调用“分析发票”API 后,可以调用获取分析发票结果 API,来获取操作状态和已提取的数据。

运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <resultId> 替换为上一步中的结果 ID。
  3. <密钥>替换为你的密钥。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/invoice/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含 JSON 输出的 200 (Success) 响应。

  • "readResults" 字段包含从发票中提取的每行文本。
  • "pageResults" 包含从发票中提取的表和选择标记。
  • "documentResults" 字段包含发票中最相关部分的键/值信息。

请查看下列账单文档及其对应的 JSON 输出。

为了可读性,已缩短此响应正文的 JSON 内容。 请参阅 GitHub 上的完整示例输出

{
    "status": "succeeded",
    "createdDateTime": "2020-11-06T23:32:11Z",
    "lastUpdatedDateTime": "2020-11-06T23:32:20Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [{
            "page": 1,
            "angle": 0,
            "width": 8.5,
            "height": 11,
            "unit": "inch"
        }],
        "pageResults": [{
            "page": 1,
            "tables": [{
                "rows": 3,
                "columns": 4,
                "cells": [{
                    "rowIndex": 0,
                    "columnIndex": 0,
                    "text": "QUANTITY",
                    "boundingBox": [0.4953,
                    5.7306,
                    1.8097,
                    5.7306,
                    1.7942,
                    6.0122,
                    0.4953,
                    6.0122]
                },
                {
                    "rowIndex": 0,
                    "columnIndex": 1,
                    "text": "DESCRIPTION",
                    "boundingBox": [1.8097,
                    5.7306,
                    5.7529,
                    5.7306,
                    5.7452,
                    6.0122,
                    1.7942,
                    6.0122]
                },
                ...
                ],
                "boundingBox": [0.4794,
                5.7132,
                8.0158,
                5.714,
                8.0118,
                6.5627,
                0.4757,
                6.5619]
            },
            {
                "rows": 2,
                "columns": 6,
                "cells": [{
                    "rowIndex": 0,
                    "columnIndex": 0,
                    "text": "SALESPERSON",
                    "boundingBox": [0.4979,
                    4.963,
                    1.8051,
                    4.963,
                    1.7975,
                    5.2398,
                    0.5056,
                    5.2398]
                },
                {
                    "rowIndex": 0,
                    "columnIndex": 1,
                    "text": "P.O. NUMBER",
                    "boundingBox": [1.8051,
                    4.963,
                    3.3047,
                    4.963,
                    3.3124,
                    5.2398,
                    1.7975,
                    5.2398]
                },
                ...
                ],
                "boundingBox": [0.4976,
                4.961,
                7.9959,
                4.9606,
                7.9959,
                5.5204,
                0.4972,
                5.5209]
            }]
        }],
        "documentResults": [{
            "docType": "prebuilt:invoice",
            "pageRange": [1,
            1],
            "fields": {
                "AmountDue": {
                    "type": "number",
                    "valueNumber": 610,
                    "text": "$610.00",
                    "boundingBox": [7.3809,
                    7.8153,
                    7.9167,
                    7.8153,
                    7.9167,
                    7.9591,
                    7.3809,
                    7.9591],
                    "page": 1,
                    "confidence": 0.875
                },
                "BillingAddress": {
                    "type": "string",
                    "valueString": "123 Bill St, Redmond WA, 98052",
                    "text": "123 Bill St, Redmond WA, 98052",
                    "boundingBox": [0.594,
                    4.3724,
                    2.0125,
                    4.3724,
                    2.0125,
                    4.7125,
                    0.594,
                    4.7125],
                    "page": 1,
                    "confidence": 0.997
                },
                "BillingAddressRecipient": {
                    "type": "string",
                    "valueString": "Microsoft Finance",
                    "text": "Microsoft Finance",
                    "boundingBox": [0.594,
                    4.1684,
                    1.7907,
                    4.1684,
                    1.7907,
                    4.2837,
                    0.594,
                    4.2837],
                    "page": 1,
                    "confidence": 0.998
                },
                ...
            }
        }]
    }
}

分析标识文档

若要开始分析标识 (ID) 文档,请使用 cURL 命令。 有关 ID 文档分析的详细信息,请参阅文档智能 ID 文档模型。 若要开始分析 ID 文档,请使用 cURL 命令调用分析 ID 文档 API。

运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <你的 ID 文档 URL> 替换为某个收据图像的 URL 地址。
  3. <密钥>替换为在上一步中复制的密钥。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/idDocument/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your ID document URL>'}"

你将收到 202 (Success) 响应,其中包含“Operation-Location”标头。 此头的值包含一个可用于查询异步操作状态和获取结果的结果 ID:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/documentId/analyzeResults/<resultId>

在以下示例中,analyzeResults/ 后面的字符串就是结果 ID:

https://api.cognitive.azure.cn/formrecognizer/v2.1/prebuilt/idDocument/analyzeResults/3bc1d6e0-e24c-41d2-8c50-14e9edc336d1

获取分析 ID 文档结果

调用“分析 ID 文档”API 后,调用获取分析 ID 文档结果 API,以获取操作状态和已提取的数据。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <resultId> 替换为上一步中的结果 ID。
  3. <密钥>替换为你的密钥。
curl -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/idDocument/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含 JSON 输出的 200 (Success) 响应。 第一个字段 "status" 指示操作的状态。 如果操作未完成,则 "status" 的值为 "running""notStarted"。 再次手动或通过脚本调用该 API,直到你收到值“succeeded”。 我们建议两次调用间隔一秒或更长时间。

  • "readResults" 字段包含从 ID 文档提取的每行文本。
  • "documentResults" 字段包含对象数组,每个对象表示在输入文档中检测到的 ID 文档。

下面是一个示例 ID 文档及其相应的 JSON 输出。

示例驾照的屏幕截图。

下面是响应正文。

{
    "status": "succeeded",
    "createdDateTime": "2021-04-13T17:24:52Z",
    "lastUpdatedDateTime": "2021-04-13T17:24:55Z",
    "analyzeResult": {
      "version": "2.1.0",
      "readResults": [
        {
          "page": 1,
          "angle": -0.2823,
          "width": 450,
          "height": 294,
          "unit": "pixel"
        }
      ],
      "documentResults": [
        {
          "docType": "prebuilt:idDocument:driverLicense",
          "docTypeConfidence": 0.995,
          "pageRange": [
            1,
            1
          ],
          "fields": {
            "Address": {
              "type": "string",
              "valueString": "123 STREET ADDRESS YOUR CITY WA 99999-1234",
              "text": "123 STREET ADDRESS YOUR CITY WA 99999-1234",
              "boundingBox": [
                158,
                151,
                326,
                151,
                326,
                177,
                158,
                177
              ],
              "page": 1,
              "confidence": 0.965
            },
            "CountryRegion": {
              "type": "countryRegion",
              "valueCountryRegion": "USA",
              "confidence": 0.99
            },
            "DateOfBirth": {
              "type": "date",
              "valueDate": "1958-01-06",
              "text": "01/06/1958",
              "boundingBox": [
                187,
                133,
                272,
                132,
                272,
                148,
                187,
                149
              ],
              "page": 1,
              "confidence": 0.99
            },
            "DateOfExpiration": {
              "type": "date",
              "valueDate": "2020-08-12",
              "text": "08/12/2020",
              "boundingBox": [
                332,
                230,
                414,
                228,
                414,
                244,
                332,
                245
              ],
              "page": 1,
              "confidence": 0.99
            },
            "DocumentNumber": {
              "type": "string",
              "valueString": "LICWDLACD5DG",
              "text": "LIC#WDLABCD456DG",
              "boundingBox": [
                162,
                70,
                307,
                68,
                307,
                84,
                163,
                85
              ],
              "page": 1,
              "confidence": 0.99
            },
            "FirstName": {
              "type": "string",
              "valueString": "LIAM R.",
              "text": "LIAM R.",
              "boundingBox": [
                158,
                102,
                216,
                102,
                216,
                116,
                158,
                116
              ],
              "page": 1,
              "confidence": 0.985
            },
            "LastName": {
              "type": "string",
              "valueString": "TALBOT",
              "text": "TALBOT",
              "boundingBox": [
                160,
                86,
                213,
                85,
                213,
                99,
                160,
                100
              ],
              "page": 1,
              "confidence": 0.987
            },
            "Region": {
              "type": "string",
              "valueString": "Washington",
              "confidence": 0.99
            },
            "Sex": {
              "type": "string",
              "valueString": "M",
              "text": "M",
              "boundingBox": [
                226,
                190,
                232,
                190,
                233,
                201,
                226,
                201
              ],
              "page": 1,
              "confidence": 0.99
            }
          }
        }
      ]
    }
  }

训练自定义模型

若要训练自定义模型,需要 Azure 存储 Blob 中的一组训练数据。 至少需要相同类型/结构的五个已填写表单(PDF 文档和/或图像)。 有关整理训练数据的提示和选项,请参阅生成和训练自定义模型

在没有已标记数据的情况下进行训练是默认操作,并且更简单。 或者,可以预先手动标记部分或全部训练数据。 手动标记是一个更为复杂的过程,但会生成更好的经过训练的模型。

注意

你还可以使用图形用户界面(例如文档智能示例标记工具)来训练模型。

不使用标签训练模型

若要使用 Azure Blob 容器中的文档来训练文档智能模型,请运行下面的 cURL 命令来调用训练自定义模型 API。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <SAS URL> 替换为 Azure Blob 存储容器的共享访问签名 (SAS) URL。

要检索自定义模型训练数据的 SAS URL,请执行以下操作:

  1. 转到 Azure 门户中的存储资源,然后选择“数据存储>容器”。

  2. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  3. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  4. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

进行更改,然后运行命令:

curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/custom/models" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<SAS URL>'}"

收到 201 (Success) 响应,其标头为 Location。 此标头的值包含新训练的模型的模型 ID,该 ID 可用于查询操作状态和获取结果:

https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>

在以下示例中,models/ 后面作为 URL 一部分的字符串就是模型 ID。

https://api.cognitive.azure.cn/formrecognizer/v2.1/custom/models/77d8ecad-b8c1-427e-ac20-a3fe4af503e9

使用标签训练模型

若要使用标签进行训练,需要在 Blob 存储容器中添加特殊标签信息文件 (<filename>.pdf.labels.json) 和训练文档。 文档智能示例标记工具提供了可帮助你创建这些标签文件的 UI。 获取它们后,可以在 JSON 正文中将 "useLabelFile" 参数设置为 true,调用训练自定义模型 API。

运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <SAS URL> 替换为 Azure Blob 存储容器的共享访问签名 (SAS) URL。

要检索自定义模型训练数据的 SAS URL,请执行以下操作:

  1. 转到 Azure 门户中的存储资源,然后选择“数据存储>容器”。1. 导航到你的容器,右键单击并选择“生成 SAS”。

    请务必获取容器的 SAS,而不是存储帐户本身的。

  2. 确保选中“读取”、“写入”、“删除”和“列出”权限,然后选择“生成 SAS 令牌和 URL”。

  3. 将“URL”部分中的值复制到临时位置。 它应当采用 https://<storage account>.blob.core.chinacloudapi.cn/<container name>?<SAS value> 形式。

进行更改,然后运行命令:

curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/custom/models" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<SAS URL>', 'useLabelFile':true}"

收到 201 (Success) 响应,其标头为 Location。 此标头的值包含新训练的模型的模型 ID,该 ID 可用于查询操作状态和获取结果:

https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>

在以下示例中,models/ 后面作为 URL 一部分的字符串就是模型 ID。

https://api.cognitive.azure.cn/formrecognizer/v2.1/custom/models/62e79d93-78a7-4d18-85be-9540dbb8e792

启动训练操作后,请使用获取自定义模型来检查训练状态。 将模型 ID 传递到 API 请求以检查训练状态:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <密钥>替换为你的密钥
  3. <模型 ID> 替换为在上一步骤收到的模型 ID
curl -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>"

使用自定义模型分析表单

接下来,使用新训练的模型分析文档并从中提取字段和表。 运行以下 cURL 命令来调用分析表单 API。 运行该命令之前,请进行以下更改:

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <模型 ID> 替换为在上一部分收到的模型 ID。
  3. <SAS URL> 替换为指向 Azure 存储中文件的 SAS URL。 按照“训练”部分中的步骤操作,但不是获取整个 blob 容器的 SAS URL,而是获取要分析的特定文件的 URL。
  4. <密钥>替换为你的密钥。
curl -v "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>/analyze?includeTextDetails=true" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" -d "{ 'source': '<SAS URL>' } "

收到 202 (Success) 响应,其标头为 Operation-Location。 此标头的值包括用于跟踪“分析”操作结果的结果 ID:

https://cognitiveservice/formrecognizer/v2.1/custom/models/<modelId>/analyzeResults/<resultId>

在以下示例中,analyzeResults/ 后面作为 URL 一部分的字符串就是结果 ID。

https://cognitiveservice/formrecognizer/v2/layout/analyzeResults/e175e9db-d920-4c7d-bc44-71d1653cdd06

保存此结果 ID 以供下一步使用。

调用分析表单结果 API 可查询分析操作的结果。

  1. <终结点>替换为你通过文档智能密钥获取的终结点。
  2. <结果 ID> 替换为上一部分中收到的 ID。
  3. <密钥>替换为你的密钥。
curl -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到包含以下格式的 JSON 正文的 200 (Success) 响应。 为了简单起见,已缩短输出。 请注意底部附近的 "status" 字段。 完成“分析”操作时,此字段将包含 "succeeded" 值。 如果“分析”操作尚未完成,则需要重新运行该命令以再次查询该服务。 我们建议两次调用间隔一秒或更长时间。

在不使用标签训练的自定义模型中,键/值对关联和表位于 JSON 输出的 "pageResults" 节点中。 在使用标签训练的自定义模型中,键/值对关联位于 "documentResults" 节点中。 如果还通过 includeTextDetails 参数指定了纯文本提取,则 "readResults" 节点将显示文档中所有文本的内容和位置。

为了简单起见,已缩短此示例 JSON 输出。 请参阅 GitHub 上的完整示例输出

{
  "status": "succeeded",
  "createdDateTime": "2020-08-21T01:13:28Z",
  "lastUpdatedDateTime": "2020-08-21T01:13:42Z",
  "analyzeResult": {
    "version": "2.1.0",
    "readResults": [
      {
        "page": 1,
        "angle": 0,
        "width": 8.5,
        "height": 11,
        "unit": "inch",
        "lines": [
          {
            "text": "Project Statement",
            "boundingBox": [
              5.0444,
              0.3613,
              8.0917,
              0.3613,
              8.0917,
              0.6718,
              5.0444,
              0.6718
            ],
            "words": [
              {
                "text": "Project",
                "boundingBox": [
                  5.0444,
                  0.3587,
                  6.2264,
                  0.3587,
                  6.2264,
                  0.708,
                  5.0444,
                  0.708
                ]
              },
              {
                "text": "Statement",
                "boundingBox": [
                  6.3361,
                  0.3635,
                  8.0917,
                  0.3635,
                  8.0917,
                  0.6396,
                  6.3361,
                  0.6396
                ]
              }
            ]
          },
          ...
        ]
      }
    ],
    "pageResults": [
      {
        "page": 1,
        "keyValuePairs": [
          {
            "key": {
              "text": "Date:",
              "boundingBox": [
                6.9833,
                1.0615,
                7.3333,
                1.0615,
                7.3333,
                1.1649,
                6.9833,
                1.1649
              ],
              "elements": [
                "#/readResults/0/lines/2/words/0"
              ]
            },
            "value": {
              "text": "9/10/2020",
              "boundingBox": [
                7.3833,
                1.0802,
                7.925,
                1.0802,
                7.925,
                1.174,
                7.3833,
                1.174
              ],
              "elements": [
                "#/readResults/0/lines/3/words/0"
              ]
            },
            "confidence": 1
          },
          ...
        ],
        "tables": [
          {
            "rows": 5,
            "columns": 5,
            "cells": [
              {
                "text": "Training Date",
                "rowIndex": 0,
                "columnIndex": 0,
                "boundingBox": [
                  0.6944,
                  4.2779,
                  1.5625,
                  4.2779,
                  1.5625,
                  4.4005,
                  0.6944,
                  4.4005
                ],
                "confidence": 1,
                "rowSpan": 1,
                "columnSpan": 1,
                "elements": [
                  "#/readResults/0/lines/15/words/0",
                  "#/readResults/0/lines/15/words/1"
                ],
                "isHeader": true,
                "isFooter": false
              },
              ...
            ]
          }
        ],
        "clusterId": 0
      }
    ],
    "documentResults": [],
    "errors": []
  }
}

改进结果

检查 "pageResults" 节点下每个键/值结果的 "confidence" 值。 还应查看 "readResults" 节点中的置信度分数,这些分数对应于文本读取操作。 读取结果的置信度不影响键/值提取结果的置信度,因此应检查此两者。

  • 如果读取操作的置信度分数低,请尝试提高输入文档的质量。 有关详细信息,请参阅输入要求
  • 如果键/值提取操作的置信度分数低,请确保所分析的文档与训练集中使用的文档是相同的类型。 如果训练集中的文档在外观上有差异,请考虑将它们拆分成不同的文件夹,针对每项差异训练一个模型。

目标置信度分数取决于用例,但通常情况下,最好将分数设定为 80% 或更高。 对于更敏感的情况,如读取医疗记录或账单,建议将分数设置为 100%。

管理自定义模型

在以下命令中使用 列出自定义模型 API 返回一个列表,其中列出属于你的订阅的所有自定义模型。

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models?op=full"
-H "Ocp-Apim-Subscription-Key: <key>"

你将收到一个 200 成功响应,其中包含如下所示的 JSON 数据。 "modelList" 元素包含所有已创建的模型及其信息。

{
  "summary": {
    "count": 0,
    "limit": 0,
    "lastUpdatedDateTime": "string"
  },
  "modelList": [
    {
      "modelId": "string",
      "status": "creating",
      "createdDateTime": "string",
      "lastUpdatedDateTime": "string"
    }
  ],
  "nextLink": "string"
}

获取特定模型

若要检索有关特定自定义模型的详细信息,请在以下命令中使用 获取自定义模型 API。

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <modelId> 替换为要查找的自定义模型的 ID。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到一个 200 成功响应,其中包含如下所示的请求正文 JSON 数据。

{
  "modelInfo": {
    "modelId": "string",
    "status": "creating",
    "createdDateTime": "string",
    "lastUpdatedDateTime": "string"
  },
  "keys": {
    "clusters": {}
  },
  "trainResult": {
    "trainingDocuments": [
      {
        "documentName": "string",
        "pages": 0,
        "errors": [
          "string"
        ],
        "status": "succeeded"
      }
    ],
    "fields": [
      {
        "fieldName": "string",
        "accuracy": 0.0
      }
    ],
    "averageModelAccuracy": 0.0,
    "errors": [
      {
        "message": "string"
      }
    ]
  }
}

从资源帐户中删除模型

还可以通过引用模型的 ID 从帐户中删除该模型。 此命令调用 删除自定义模型 API,以删除在上一部分中使用的模型。

  1. <终结点>替换为你通过文档智能订阅获取的终结点。
  2. <密钥>替换为在上一步中复制的密钥。
  3. <modelId> 替换为要查找的自定义模型的 ID。
curl -v -X DELETE "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Ocp-Apim-Subscription-Key: <key>"

你将收到 204 成功响应,指示模型已标记为待删除。 模型项目将在 48 小时内移除。

后续步骤

对于此项目,你使用文档智能 REST API 以不同方式分析了表单。 接下来,请浏览参考文档来深入了解文档智能 API。