Compartir a través de

实现语言识别

语言标识用于在与支持的语言列表比较时确定音频中所说的语言。

语言标识 (LID) 用例包括:

  • 语音转文本识别,用于需要识别音频源中的语言并将其转录为文本时。
  • 语音翻译,用于需要识别音频源中的语言并将其翻译为另一种语言时。

对于语音识别,语言标识的初始延迟较高。 你应只在需要时添加此可选功能。

设置配置选项

无论是将语言识别与语音转文本还是与语音翻译一起使用,都需要了解一些常见概念和配置选项。

然后,向语音服务提出识别一次或连续识别请求。

重要

语言标识 API 是使用语音 SDK 版本 1.25 及更高版本简化的。 已删除 SpeechServiceConnection_SingleLanguageIdPrioritySpeechServiceConnection_ContinuousLanguageIdPriority 属性。 单个属性 SpeechServiceConnection_LanguageIdMode 会替换它们。 不再需要在低延迟和高准确度之间进行优先级选择。 对于连续语音识别或翻译,你只需选择是在启动时运行还是连续运行语言识别即可。

本文提供代码片段来描述这些概念。 提供了指向每个用例的完整示例的链接。

候选语言

向候选语言提供 AutoDetectSourceLanguageConfig 对象。 你预计音频中至少出现了一个候选语言。 对于起始 LID,最多可添加 4 种语言;对于连续 LID,最多可添加 10 种语言。 语音服务会返回提供的其中一种候选语言,即使音频中不存在这些语言。 例如,如果提供 fr-FR(法语)和 en-US(英语)作为候选语言,但语音使用的是德语,则服务会返回 fr-FRen-US

必须提供带有破折号 (-) 分隔符的完整区域设置,但语言标识仅使用每个基本语言一个区域设置。 对于同一语言,请勿包含多个区域设置(例如“en-US”和“en-GB”)。

var autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.FromLanguages(new string[] { "en-US", "de-DE", "zh-cn" });
auto autoDetectSourceLanguageConfig = 
    AutoDetectSourceLanguageConfig::FromLanguages({ "en-US", "de-DE", "zh-cn" });
auto_detect_source_language_config = \
    speechsdk.languageconfig.AutoDetectSourceLanguageConfig(languages=["en-US", "de-DE", "zh-cn"])
AutoDetectSourceLanguageConfig autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.fromLanguages(Arrays.asList("en-US", "de-DE", "zh-cn"));
var autoDetectSourceLanguageConfig = SpeechSDK.AutoDetectSourceLanguageConfig.fromLanguages([("en-US", "de-DE", "zh-cn"]);
NSArray *languages = @[@"en-US", @"de-DE", @"zh-cn"];
SPXAutoDetectSourceLanguageConfiguration* autoDetectSourceLanguageConfig = \
    [[SPXAutoDetectSourceLanguageConfiguration alloc]init:languages];

有关详细信息,请参阅支持的语言

“起始”和“连续”语言标识

语音支持起始和连续语言标识 (LID)。

注意

只有 C#、C++、Java(仅限语音转文本)、JavaScript(仅限文本转语音)和 Python 中的语音 SDK 支持连续语言标识。

  • “起始 LID”在音频的前几秒钟内标识语言一次。 如果音频中的语言不会更改,请使用“起始 LID”。 使用起始 LID 时,可以在不到 5 秒的时间内检测并返回一种语言。
  • 连续 LID 可以在音频期间识别多种语言。 如果音频中的语言会更改,请使用“连续 LID”。 “连续 LID”不支持在同一句子中更改语言。 例如,如果你主要说西班牙语并插入一些英语单词,它不会检测每个单词的语言更改。

通过调用用于识别一次或连续识别的方法,实现“起始 LID”或“连续 LID”。 仅连续识别支持连续 LID。

识别一次或连续识别

语言标识通过识别对象和操作完成。 向语音服务请求识别音频。

注意

请勿将识别与标识混淆。 识别可以与语言标识一起使用,也可单独使用。

将调用“识别一次”方法,或启动和停止连续识别方法。 你可从以下选项中进行选择:

  • 使用“起始 LID”识别一次。 “识别一次”不支持连续 LID。
  • 使用启动时 LID 和连续识别。
  • 使用连续 LID 和连续识别。

仅“连续 LID”需要 SpeechServiceConnection_LanguageIdMode 属性。 如果不进行设置,语音服务默认为“启动时 LID”。 支持的值为启动时 LID AtStart 或连续 LID Continuous

// Recognize once with At-start LID. Continuous LID isn't supported for recognize once.
var result = await recognizer.RecognizeOnceAsync();

// Start and stop continuous recognition with At-start LID
await recognizer.StartContinuousRecognitionAsync();
await recognizer.StopContinuousRecognitionAsync();

// Start and stop continuous recognition with Continuous LID
speechConfig.SetProperty(PropertyId.SpeechServiceConnection_LanguageIdMode, "Continuous");
await recognizer.StartContinuousRecognitionAsync();
await recognizer.StopContinuousRecognitionAsync();
// Recognize once with At-start LID. Continuous LID isn't supported for recognize once.
auto result = recognizer->RecognizeOnceAsync().get();

// Start and stop continuous recognition with At-start LID
recognizer->StartContinuousRecognitionAsync().get();
recognizer->StopContinuousRecognitionAsync().get();

// Start and stop continuous recognition with Continuous LID
speechConfig->SetProperty(PropertyId::SpeechServiceConnection_LanguageIdMode, "Continuous");
recognizer->StartContinuousRecognitionAsync().get();
recognizer->StopContinuousRecognitionAsync().get();
// Recognize once with At-start LID. Continuous LID isn't supported for recognize once.
SpeechRecognitionResult  result = recognizer->RecognizeOnceAsync().get();

// Start and stop continuous recognition with At-start LID
recognizer.startContinuousRecognitionAsync().get();
recognizer.stopContinuousRecognitionAsync().get();

// Start and stop continuous recognition with Continuous LID
speechConfig.setProperty(PropertyId.SpeechServiceConnection_LanguageIdMode, "Continuous");
recognizer.startContinuousRecognitionAsync().get();
recognizer.stopContinuousRecognitionAsync().get();
# Recognize once with At-start LID. Continuous LID isn't supported for recognize once.
result = recognizer.recognize_once()

# Start and stop continuous recognition with At-start LID
recognizer.start_continuous_recognition()
recognizer.stop_continuous_recognition()

# Start and stop continuous recognition with Continuous LID
speech_config.set_property(property_id=speechsdk.PropertyId.SpeechServiceConnection_LanguageIdMode, value='Continuous')
recognizer.start_continuous_recognition()
recognizer.stop_continuous_recognition()

使用“语音转文本”功能

当需要识别音频源中的语言并将其转录为文本时,使用语音转文本识别。 有关详细信息,请参阅语音转文本概述

注意

C#、C++、Python、Java、JavaScript 和 Objective-C 中的语音 SDK 支持使用起始语言标识的语音转文本识别。 只有 C#、C++、Java、JavaScript 和 Python 中的语音 SDK 支持使用连续语言标识的语音转文本识别。

目前,对于具有连续语言识别功能的语音转文本识别,必须从 wss://{region}.stt.speech.azure.cn/speech/universal/v2 终结点字符串创建 SpeechConfig,如代码示例中所示。 在将来的 SDK 版本中,无需设置它。

有关使用语言标识的语音转文本识别的更多示例,请参阅 GitHub

using Microsoft.CognitiveServices.Speech;
using Microsoft.CognitiveServices.Speech.Audio;

var speechConfig = SpeechConfig.FromSubscription("YourSubscriptionKey","YourServiceRegion");

var autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.FromLanguages(
        new string[] { "en-US", "de-DE", "zh-cn" });

using var audioConfig = AudioConfig.FromDefaultMicrophoneInput();
using (var recognizer = new SpeechRecognizer(
    speechConfig,
    autoDetectSourceLanguageConfig,
    audioConfig))
{
    var speechRecognitionResult = await recognizer.RecognizeOnceAsync();
    var autoDetectSourceLanguageResult =
        AutoDetectSourceLanguageResult.FromResult(speechRecognitionResult);
    var detectedLanguage = autoDetectSourceLanguageResult.Language;
}

有关使用语言标识的语音转文本识别的更多示例,请参阅 GitHub

using namespace std;
using namespace Microsoft::CognitiveServices::Speech;
using namespace Microsoft::CognitiveServices::Speech::Audio;

auto speechConfig = SpeechConfig::FromSubscription("YourSubscriptionKey","YourServiceRegion");

auto autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig::FromLanguages({ "en-US", "de-DE", "zh-cn" });

auto recognizer = SpeechRecognizer::FromConfig(
    speechConfig,
    autoDetectSourceLanguageConfig
    );

speechRecognitionResult = recognizer->RecognizeOnceAsync().get();
auto autoDetectSourceLanguageResult =
    AutoDetectSourceLanguageResult::FromResult(speechRecognitionResult);
auto detectedLanguage = autoDetectSourceLanguageResult->Language;

有关使用语言标识的语音转文本识别的更多示例,请参阅 GitHub

AutoDetectSourceLanguageConfig autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.fromLanguages(Arrays.asList("en-US", "de-DE"));

SpeechRecognizer recognizer = new SpeechRecognizer(
    speechConfig,
    autoDetectSourceLanguageConfig,
    audioConfig);

Future<SpeechRecognitionResult> future = recognizer.recognizeOnceAsync();
SpeechRecognitionResult result = future.get(30, TimeUnit.SECONDS);
AutoDetectSourceLanguageResult autoDetectSourceLanguageResult =
    AutoDetectSourceLanguageResult.fromResult(result);
String detectedLanguage = autoDetectSourceLanguageResult.getLanguage();

recognizer.close();
speechConfig.close();
autoDetectSourceLanguageConfig.close();
audioConfig.close();
result.close();

有关使用语言标识的语音转文本识别的更多示例,请参阅 GitHub

auto_detect_source_language_config = \
        speechsdk.languageconfig.AutoDetectSourceLanguageConfig(languages=["en-US", "de-DE"])
speech_recognizer = speechsdk.SpeechRecognizer(
        speech_config=speech_config, 
        auto_detect_source_language_config=auto_detect_source_language_config, 
        audio_config=audio_config)
result = speech_recognizer.recognize_once()
auto_detect_source_language_result = speechsdk.AutoDetectSourceLanguageResult(result)
detected_language = auto_detect_source_language_result.language
NSArray *languages = @[@"en-US", @"de-DE", @"zh-cn"];
SPXAutoDetectSourceLanguageConfiguration* autoDetectSourceLanguageConfig = \
        [[SPXAutoDetectSourceLanguageConfiguration alloc]init:languages];
SPXSpeechRecognizer* speechRecognizer = \
        [[SPXSpeechRecognizer alloc] initWithSpeechConfiguration:speechConfig
                           autoDetectSourceLanguageConfiguration:autoDetectSourceLanguageConfig
                                              audioConfiguration:audioConfig];
SPXSpeechRecognitionResult *result = [speechRecognizer recognizeOnce];
SPXAutoDetectSourceLanguageResult *languageDetectionResult = [[SPXAutoDetectSourceLanguageResult alloc] init:result];
NSString *detectedLanguage = [languageDetectionResult language];
var autoDetectSourceLanguageConfig = SpeechSDK.AutoDetectSourceLanguageConfig.fromLanguages(["en-US", "de-DE"]);
var speechRecognizer = SpeechSDK.SpeechRecognizer.FromConfig(speechConfig, autoDetectSourceLanguageConfig, audioConfig);
speechRecognizer.recognizeOnceAsync((result: SpeechSDK.SpeechRecognitionResult) => {
        var languageDetectionResult = SpeechSDK.AutoDetectSourceLanguageResult.fromResult(result);
        var detectedLanguage = languageDetectionResult.language;
},
{});

语音转文本自定义模型

注意

自定义模型的语言检测只可用于实时语音转文本和语音翻译。 批量听录仅支持默认基础模型的语言检测。

此示例演示如何将语言检测与自定义终结点一起使用。 如果检测到的语言为 en-US,则示例使用默认模型。 如果检测到的语言为 fr-FR,则示例使用自定义模型终结点。 有关详细信息,请参阅部署自定义语音识别模型

var sourceLanguageConfigs = new SourceLanguageConfig[]
{
    SourceLanguageConfig.FromLanguage("en-US"),
    SourceLanguageConfig.FromLanguage("fr-FR", "The Endpoint Id for custom model of fr-FR")
};
var autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.FromSourceLanguageConfigs(
        sourceLanguageConfigs);

此示例演示如何将语言检测与自定义终结点一起使用。 如果检测到的语言为 en-US,则示例使用默认模型。 如果检测到的语言为 fr-FR,则示例使用自定义模型终结点。 有关详细信息,请参阅部署自定义语音识别模型

std::vector<std::shared_ptr<SourceLanguageConfig>> sourceLanguageConfigs;
sourceLanguageConfigs.push_back(
    SourceLanguageConfig::FromLanguage("en-US"));
sourceLanguageConfigs.push_back(
    SourceLanguageConfig::FromLanguage("fr-FR", "The Endpoint Id for custom model of fr-FR"));

auto autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig::FromSourceLanguageConfigs(
        sourceLanguageConfigs);

此示例演示如何将语言检测与自定义终结点一起使用。 如果检测到的语言为 en-US,则示例使用默认模型。 如果检测到的语言为 fr-FR,则示例使用自定义模型终结点。 有关详细信息,请参阅部署自定义语音识别模型

List sourceLanguageConfigs = new ArrayList<SourceLanguageConfig>();
sourceLanguageConfigs.add(
    SourceLanguageConfig.fromLanguage("en-US"));
sourceLanguageConfigs.add(
    SourceLanguageConfig.fromLanguage("fr-FR", "The Endpoint Id for custom model of fr-FR"));

AutoDetectSourceLanguageConfig autoDetectSourceLanguageConfig =
    AutoDetectSourceLanguageConfig.fromSourceLanguageConfigs(
        sourceLanguageConfigs);

此示例演示如何将语言检测与自定义终结点一起使用。 如果检测到的语言为 en-US,则示例使用默认模型。 如果检测到的语言为 fr-FR,则示例使用自定义模型终结点。 有关详细信息,请参阅部署自定义语音识别模型

 en_language_config = speechsdk.languageconfig.SourceLanguageConfig("en-US")
 fr_language_config = speechsdk.languageconfig.SourceLanguageConfig("fr-FR", "The Endpoint Id for custom model of fr-FR")
 auto_detect_source_language_config = speechsdk.languageconfig.AutoDetectSourceLanguageConfig(
        sourceLanguageConfigs=[en_language_config, fr_language_config])

此示例演示如何将语言检测与自定义终结点一起使用。 如果检测到的语言为 en-US,则示例使用默认模型。 如果检测到的语言为 fr-FR,则示例使用自定义模型终结点。 有关详细信息,请参阅部署自定义语音识别模型

SPXSourceLanguageConfiguration* enLanguageConfig = [[SPXSourceLanguageConfiguration alloc]init:@"en-US"];
SPXSourceLanguageConfiguration* frLanguageConfig = \
        [[SPXSourceLanguageConfiguration alloc]initWithLanguage:@"fr-FR"
                                                     endpointId:@"The Endpoint Id for custom model of fr-FR"];
NSArray *languageConfigs = @[enLanguageConfig, frLanguageConfig];
SPXAutoDetectSourceLanguageConfiguration* autoDetectSourceLanguageConfig = \
        [[SPXAutoDetectSourceLanguageConfiguration alloc]initWithSourceLanguageConfigurations:languageConfigs];
var enLanguageConfig = SpeechSDK.SourceLanguageConfig.fromLanguage("en-US");
var frLanguageConfig = SpeechSDK.SourceLanguageConfig.fromLanguage("fr-FR", "The Endpoint Id for custom model of fr-FR");
var autoDetectSourceLanguageConfig = SpeechSDK.AutoDetectSourceLanguageConfig.fromSourceLanguageConfigs([enLanguageConfig, frLanguageConfig]);

运行语音翻译

当需要识别音频源中的语言并将其翻译为另一种语言时,请使用语音翻译。 有关详细信息,请参阅语音翻译概述

注意

C#、C++、JavaScript 和 Python 中的语音 SDK 仅支持使用语言标识的语音翻译。 目前,对于具有语言识别功能的语音翻译,必须从 wss://{region}.stt.speech.azure.cn/speech/universal/v2 终结点字符串创建 SpeechConfig,如代码示例中所示。 在将来的 SDK 版本中,无需设置它。

有关使用语言标识的语音翻译的更多示例,请参阅 GitHub

using Microsoft.CognitiveServices.Speech;
using Microsoft.CognitiveServices.Speech.Audio;
using Microsoft.CognitiveServices.Speech.Translation;

public static async Task RecognizeOnceSpeechTranslationAsync()
{
    var region = "YourServiceRegion";
    // Currently the v2 endpoint is required. In a future SDK release you won't need to set it.
    var endpointString = $"wss://{region}.stt.speech.azure.cn/speech/universal/v2";
    var endpointUrl = new Uri(endpointString);

    var config = SpeechTranslationConfig.FromEndpoint(endpointUrl, "YourSubscriptionKey");

    // Source language is required, but currently ignored. 
    string fromLanguage = "en-US";
    speechTranslationConfig.SpeechRecognitionLanguage = fromLanguage;

    speechTranslationConfig.AddTargetLanguage("de");
    speechTranslationConfig.AddTargetLanguage("fr");

    var autoDetectSourceLanguageConfig = AutoDetectSourceLanguageConfig.FromLanguages(new string[] { "en-US", "de-DE", "zh-cn" });

    using var audioConfig = AudioConfig.FromDefaultMicrophoneInput();

    using (var recognizer = new TranslationRecognizer(
        speechTranslationConfig, 
        autoDetectSourceLanguageConfig,
        audioConfig))
    {

        Console.WriteLine("Say something or read from file...");
        var result = await recognizer.RecognizeOnceAsync().ConfigureAwait(false);

        if (result.Reason == ResultReason.TranslatedSpeech)
        {
            var lidResult = result.Properties.GetProperty(PropertyId.SpeechServiceConnection_AutoDetectSourceLanguageResult);

            Console.WriteLine($"RECOGNIZED in '{lidResult}': Text={result.Text}");
            foreach (var element in result.Translations)
            {
                Console.WriteLine($"    TRANSLATED into '{element.Key}': {element.Value}");
            }
        }
    }
}

有关使用语言标识的语音翻译的更多示例,请参阅 GitHub

auto region = "YourServiceRegion";
// Currently the v2 endpoint is required. In a future SDK release you won't need to set it.
auto endpointString = std::format("wss://{}.stt.speech.azure.cn/speech/universal/v2", region);
auto config = SpeechTranslationConfig::FromEndpoint(endpointString, "YourSubscriptionKey");

auto autoDetectSourceLanguageConfig = AutoDetectSourceLanguageConfig::FromLanguages({ "en-US", "de-DE" });

// Sets source and target languages
// The source language will be detected by the language detection feature. 
// However, the SpeechRecognitionLanguage still need to set with a locale string, but it will not be used as the source language.
// This will be fixed in a future version of Speech SDK.
auto fromLanguage = "en-US";
config->SetSpeechRecognitionLanguage(fromLanguage);
config->AddTargetLanguage("de");
config->AddTargetLanguage("fr");

// Creates a translation recognizer using microphone as audio input.
auto recognizer = TranslationRecognizer::FromConfig(config, autoDetectSourceLanguageConfig);
cout << "Say something...\n";

// Starts translation, and returns after a single utterance is recognized. The end of a
// single utterance is determined by listening for silence at the end or until a maximum of 15
// seconds of audio is processed. The task returns the recognized text as well as the translation.
// Note: Since RecognizeOnceAsync() returns only a single utterance, it is suitable only for single
// shot recognition like command or query.
// For long-running multi-utterance recognition, use StartContinuousRecognitionAsync() instead.
auto result = recognizer->RecognizeOnceAsync().get();

// Checks result.
if (result->Reason == ResultReason::TranslatedSpeech)
{
    cout << "RECOGNIZED: Text=" << result->Text << std::endl;

    for (const auto& it : result->Translations)
    {
        cout << "TRANSLATED into '" << it.first.c_str() << "': " << it.second.c_str() << std::endl;
    }
}
else if (result->Reason == ResultReason::RecognizedSpeech)
{
    cout << "RECOGNIZED: Text=" << result->Text << " (text could not be translated)" << std::endl;
}
else if (result->Reason == ResultReason::NoMatch)
{
    cout << "NOMATCH: Speech could not be recognized." << std::endl;
}
else if (result->Reason == ResultReason::Canceled)
{
    auto cancellation = CancellationDetails::FromResult(result);
    cout << "CANCELED: Reason=" << (int)cancellation->Reason << std::endl;

    if (cancellation->Reason == CancellationReason::Error)
    {
        cout << "CANCELED: ErrorCode=" << (int)cancellation->ErrorCode << std::endl;
        cout << "CANCELED: ErrorDetails=" << cancellation->ErrorDetails << std::endl;
        cout << "CANCELED: Did you set the speech resource key and region values?" << std::endl;
    }
}

有关使用语言标识的语音翻译的更多示例,请参阅 GitHub

import azure.cognitiveservices.speech as speechsdk
import time
import json

speech_key, service_region = "YourSubscriptionKey","YourServiceRegion"
weatherfilename="en-us_zh-cn.wav"

# set up translation parameters: source language and target languages
# Currently the v2 endpoint is required. In a future SDK release you won't need to set it. 
endpoint_string = "wss://{}.stt.speech.azure.cn/speech/universal/v2".format(service_region)
translation_config = speechsdk.translation.SpeechTranslationConfig(
    subscription=speech_key,
    endpoint=endpoint_string,
    speech_recognition_language='en-US',
    target_languages=('de', 'fr'))
audio_config = speechsdk.audio.AudioConfig(filename=weatherfilename)

# Specify the AutoDetectSourceLanguageConfig, which defines the number of possible languages
auto_detect_source_language_config = speechsdk.languageconfig.AutoDetectSourceLanguageConfig(languages=["en-US", "de-DE", "zh-cn"])

# Creates a translation recognizer using and audio file as input.
recognizer = speechsdk.translation.TranslationRecognizer(
    translation_config=translation_config, 
    audio_config=audio_config,
    auto_detect_source_language_config=auto_detect_source_language_config)

# Starts translation, and returns after a single utterance is recognized. The end of a
# single utterance is determined by listening for silence at the end or until a maximum of 15
# seconds of audio is processed. The task returns the recognition text as result.
# Note: Since recognize_once() returns only a single utterance, it is suitable only for single
# shot recognition like command or query.
# For long-running multi-utterance recognition, use start_continuous_recognition() instead.
result = recognizer.recognize_once()

# Check the result
if result.reason == speechsdk.ResultReason.TranslatedSpeech:
    print("""Recognized: {}
    German translation: {}
    French translation: {}""".format(
        result.text, result.translations['de'], result.translations['fr']))
elif result.reason == speechsdk.ResultReason.RecognizedSpeech:
    print("Recognized: {}".format(result.text))
    detectedSrcLang = result.properties[speechsdk.PropertyId.SpeechServiceConnection_AutoDetectSourceLanguageResult]
    print("Detected Language: {}".format(detectedSrcLang))
elif result.reason == speechsdk.ResultReason.NoMatch:
    print("No speech could be recognized: {}".format(result.no_match_details))
elif result.reason == speechsdk.ResultReason.Canceled:
    print("Translation canceled: {}".format(result.cancellation_details.reason))
    if result.cancellation_details.reason == speechsdk.CancellationReason.Error:
        print("Error details: {}".format(result.cancellation_details.error_details))