适用于 Scala 的 Databricks Connect 的代码示例
注意
本文介绍适用于 Databricks Runtime 13.3 LTS 及更高版本的 Databricks Connect。
本文提供使用适用于 Scala 的 Databricks Connect 的代码示例。 Databricks Connect 使你能够将常用 IDE、笔记本服务器和自定义应用程序连接到 Azure Databricks 群集。 请参阅什么是 Databricks Connect?。 有关本文的 Python 版本,请参阅适用于 Python 的 Databricks Connect 代码示例。
注意
在开始使用 Databricks Connect 之前,必须先设置 Databricks Connect 客户端。
Databricks 额外提供了几个示例应用,以演示如何使用 Databricks Connect。 请参阅 GitHub 中的 Databricks Connect 示例应用程序存储库,具体如下:
也可以使用以下更简单的代码示例来体验 Databricks Connect。 这些示例假定你对 Databricks Connect 客户端设置使用默认身份验证。
此简单代码示例查询指定的表,然后显示指定的表的前 5 行。 若要使用其他表,请调整对 spark.read.table
的调用。
import com.databricks.connect.DatabricksSession
import org.apache.spark.sql.SparkSession
object Main {
def main(args: Array[String]): Unit = {
val spark = DatabricksSession.builder().getOrCreate()
val df = spark.read.table("samples.nyctaxi.trips")
df.limit(5).show()
}
}
此较长代码示例执行以下操作:
- 创建内存中数据帧。
- 在
default
架构中创建名为zzz_demo_temps_table
的表。 如果已存在同名的表,则先删除该表。 若要使用其他架构或表,请调整对spark.sql
和/或temps.write.saveAsTable
的调用。 - 将数据帧的内容保存到表中。
- 对表的内容运行
SELECT
查询。 - 显示查询的结果。
- 删除表。
import com.databricks.connect.DatabricksSession
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types._
import java.time.LocalDate
object Main {
def main(args: Array[String]): Unit = {
val spark = DatabricksSession.builder().getOrCreate()
// Create a Spark DataFrame consisting of high and low temperatures
// by airport code and date.
val schema = StructType(
Seq(
StructField("AirportCode", StringType, false),
StructField("Date", DateType, false),
StructField("TempHighF", IntegerType, false),
StructField("TempLowF", IntegerType, false)
)
)
val data = Seq(
( "BLI", LocalDate.of(2021, 4, 3), 52, 43 ),
( "BLI", LocalDate.of(2021, 4, 2), 50, 38),
( "BLI", LocalDate.of(2021, 4, 1), 52, 41),
( "PDX", LocalDate.of(2021, 4, 3), 64, 45),
( "PDX", LocalDate.of(2021, 4, 2), 61, 41),
( "PDX", LocalDate.of(2021, 4, 1), 66, 39),
( "SEA", LocalDate.of(2021, 4, 3), 57, 43),
( "SEA", LocalDate.of(2021, 4, 2), 54, 39),
( "SEA", LocalDate.of(2021, 4, 1), 56, 41)
)
val temps = spark.createDataFrame(data).toDF(schema.fieldNames: _*)
// Create a table on the Databricks cluster and then fill
// the table with the DataFrame 's contents.
// If the table already exists from a previous run,
// delete it first.
spark.sql("USE default")
spark.sql("DROP TABLE IF EXISTS zzz_demo_temps_table")
temps.write.saveAsTable("zzz_demo_temps_table")
// Query the table on the Databricks cluster, returning rows
// where the airport code is not BLI and the date is later
// than 2021-04-01.Group the results and order by high
// temperature in descending order.
val df_temps = spark.sql("SELECT * FROM zzz_demo_temps_table " +
"WHERE AirportCode != 'BLI' AND Date > '2021-04-01' " +
"GROUP BY AirportCode, Date, TempHighF, TempLowF " +
"ORDER BY TempHighF DESC")
df_temps.show()
// Results:
// +------------+-----------+---------+--------+
// | AirportCode| Date|TempHighF|TempLowF|
// +------------+-----------+---------+--------+
// | PDX | 2021-04-03| 64 | 45 |
// | PDX | 2021-04-02| 61 | 41 |
// | SEA | 2021-04-03| 57 | 43 |
// | SEA | 2021-04-02| 54 | 39 |
// +------------+-----------+---------+--------+
// Clean up by deleting the table from the Databricks cluster.
spark.sql("DROP TABLE zzz_demo_temps_table")
}
}
注意
以下示例介绍了在 Databricks Connect 中的 DatabricksSession
类不可用的情况下如何使用 SparkSession
类。
此示例查询指定的表并返回前 5 行。 此示例使用 SPARK_REMOTE
环境变量进行身份验证。
import org.apache.spark.sql.{DataFrame, SparkSession}
object Main {
def main(args: Array[String]): Unit = {
getTaxis(getSpark()).show(5)
}
private def getSpark(): SparkSession = {
SparkSession.builder().getOrCreate()
}
private def getTaxis(spark: SparkSession): DataFrame = {
spark.read.table("samples.nyctaxi.trips")
}
}