Databricks Runtime 6.1 ML(不受支持)Databricks Runtime 6.1 ML (Unsupported)

Databricks 于 2019 年 10 月发布了此映像。Databricks released this image in October 2019.

Databricks Runtime 6.1 ML 基于 Databricks Runtime 6.1(不受支持),为机器学习和数据科学提供了随时可用的环境。Databricks Runtime 6.1 ML provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 6.1 (Unsupported). 用于 ML 的 Databricks Runtime 包含许多常用的机器学习库,例如 TensorFlow、PyTorch、Keras 和 XGBoost。Databricks Runtime for ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. 它还支持使用 Horovod 进行分布式深度学习训练。It also supports distributed deep learning training using Horovod.

有关详细信息,包括有关如何创建 Databricks Runtime ML 群集的说明,请参阅用于机器学习的 Databricks RuntimeFor more information, including instructions for creating a Databricks Runtime ML cluster, see Databricks Runtime for Machine Learning.

新增功能New features

Databricks Runtime 6.1 ML 基于 Databricks Runtime 6.1 构建。Databricks Runtime 6.1 ML is built on top of Databricks Runtime 6.1. 若要了解 Databricks Runtime 6.1 中的新增功能,请参阅 Databricks Runtime 6.1(不受支持)发行说明。For information on what’s new in Databricks Runtime 6.1, see the Databricks Runtime 6.1 (Unsupported) release notes.

改进Improvements

升级了机器学习库:Upgraded machine learning libraries:

  • TensorFlow:1.13.1 到 1.14.0TensorFlow: 1.13.1 to 1.14.0
  • PyTorch:1.1.0 到 1.2.0PyTorch: 1.1.0 to 1.2.0
  • Torchvision:0.3.0 到 0.4.0Torchvision: 0.3.0 to 0.4.0
  • MLflow:1.2.0 到 1.3.0MLflow: 1.2.0 to 1.3.0

系统环境System environment

Databricks Runtime 6.1 ML 中的系统环境在以下方面不同于 Databricks Runtime 6.1:The system environment in Databricks Runtime 6.1 ML differs from Databricks Runtime 6.1 as follows:

  • DBUtils:不包含库实用工具DBUtils: Does not contain Library utilities.
  • 对于 GPU 群集,有以下 NVIDIA GPU 库:For GPU clusters, the following NVIDIA GPU libraries:
    • NVIDIA 驱动程序 418.40NVIDIA driver 418.40
    • CUDA 10.0CUDA 10.0
    • CUDNN 7.6.0CUDNN 7.6.0

Libraries

以下部分列出了 Databricks Runtime 6.1 ML 中包含的库,这些库不同于 Databricks Runtime 6.1 中包含的库。The following sections list the libraries included in Databricks Runtime 6.1 ML that differ from those included in Databricks Runtime 6.1.

顶层库Top-tier libraries

Databricks Runtime 6.1 ML 包含以下顶层Databricks Runtime 6.1 ML includes the following top-tier libraries:

Python 库Python libraries

Databricks Runtime 6.1 ML 使用 Conda 进行 Python 包管理,并且包含许多常用的 ML 包。Databricks Runtime 6.1 ML uses Conda for Python package management and includes many popular ML packages. 下一部分介绍用于 Databricks Runtime 6.1 ML 的 Conda 环境。The following section describes the Conda environment for Databricks Runtime 6.1 ML.

CPU 群集上的 PythonPython on CPU clusters

name: databricks-ml
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.8.0=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py37_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.3.2=py_0
  - gitdb2=2.0.5=py37_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.7=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py37_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.9.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=he6710b0_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py37_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.9.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37he6710b0_0
  - py-xgboost-cpu=0.90=py37_0
  - pyasn1=0.4.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.2.0=py3.7_cpu_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.14.0=py37hf484d3e_0
  - tensorflow=1.14.0+db1=mkl_py37h0f35a5d_0
  - tensorflow-base=1.14.0+db1=mkl_py37h7ce6ba3_0
  - tensorflow-estimator=1.14.0+db1=py_0
  - tensorflow-mkl=1.14.0+db1=h4fcabd2_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.0=py37_cpu
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.0
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.1
    - hyperopt==0.1.2.db8
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.3.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.8+db1
prefix: /databricks/conda/envs/databricks-ml

GPU 群集上的 PythonPython on GPU clusters

name: databricks-ml-gpu
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.8.0=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py37_0
  - configparser=3.7.4=py37_0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cudatoolkit=10.0.130=0
  - cudnn=7.6.0=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.3.2=py_0
  - gitdb2=2.0.5=py37_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.7=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py37_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.9.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py37_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.9.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37h688424c_0
  - py-xgboost-gpu=0.90=py37h28bbb66_0
  - pyasn1=0.4.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.2.0=py3.7_cuda10.0.130_cudnn7.6.2_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.14.0=py37hf484d3e_0
  - tensorflow=1.14.0+db1=gpu_py37h517d0a7_0
  - tensorflow-base=1.14.0+db1=gpu_py37he292aa2_0
  - tensorflow-estimator=1.14.0+db1=py_0
  - tensorflow-gpu=1.14.0+db1=h0d30ee6_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.0=py37_cu100
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.0
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.1
    - hyperopt==0.1.2.db8
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.3.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.8+db1
prefix: /databricks/conda/envs/databricks-ml-gpu

包含 Python 模块的 Spark 包Spark packages containing Python modules

Spark 包Spark Package Python 模块Python Module 版本Version
graphframesgraphframes graphframesgraphframes 0.7.0-db1-spark2.40.7.0-db1-spark2.4
spark-deep-learningspark-deep-learning sparkdlsparkdl 1.5.0-db5-spark2.41.5.0-db5-spark2.4
tensorframestensorframes tensorframestensorframes 0.8.1-s_2.110.8.1-s_2.11

R 库R libraries

R 库与 Databricks Runtime 6.1 中的 R 库完全相同。The R libraries are identical to the R Libraries in Databricks Runtime 6.1.

Java 和 Scala 库(Scala 2.11 群集)Java and Scala libraries (Scala 2.11 cluster)

除了 Databricks Runtime 6.1 中的 Java 库和 Scala 库之外,Databricks Runtime 6.1 ML 还包含以下 JAR:In addition to Java and Scala libraries in Databricks Runtime 6.1, Databricks Runtime 6.1 ML contains the following JARs:

组 IDGroup ID 项目 IDArtifact ID 版本Version
com.databrickscom.databricks spark-deep-learningspark-deep-learning 1.5.0-db5-spark2.41.5.0-db5-spark2.4
com.typesafe.akkacom.typesafe.akka akka-actor_2.11akka-actor_2.11 2.3.112.3.11
ml.combust.mleapml.combust.mleap mleap-databricks-runtime_2.11mleap-databricks-runtime_2.11 0.14.00.14.0
ml.dmlcml.dmlc xgboost4jxgboost4j 0.900.90
ml.dmlcml.dmlc xgboost4j-sparkxgboost4j-spark 0.900.90
org.graphframesorg.graphframes graphframes_2.11graphframes_2.11 0.7.0-db1-spark2.40.7.0-db1-spark2.4
org.mlfloworg.mlflow mlflow-clientmlflow-client 1.3.01.3.0
org.tensorfloworg.tensorflow libtensorflowlibtensorflow 1.14.01.14.0
org.tensorfloworg.tensorflow libtensorflow_jnilibtensorflow_jni 1.14.01.14.0
org.tensorfloworg.tensorflow spark-tensorflow-connector_2.11spark-tensorflow-connector_2.11 1.14.01.14.0
org.tensorfloworg.tensorflow tensorflowtensorflow 1.14.01.14.0
org.tensorframesorg.tensorframes tensorframestensorframes 0.8.1-s_2.110.8.1-s_2.11