创建数据存储

适用范围:Azure CLI ml 扩展 v2(最新版)Python SDK azure-ai-ml v2(最新版)

本文介绍如何通过 Azure 机器学习数据存储连接到 Azure 数据存储服务。

先决条件

注意

机器学习数据存储不会创建基础存储帐户资源。 相反,它们链接现有存储帐户以供机器学习使用。 不需要机器学习数据存储。 如果有权访问基础数据,可以直接使用存储 URI。

创建 Azure Blob 数据存储

from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml import MLClient

ml_client = MLClient.from_config()

store = AzureBlobDatastore(
    name="",
    description="",
    account_name="",
    container_name=""
)

ml_client.create_or_update(store)

创建 Azure Data Lake Storage Gen2 数据存储

from azure.ai.ml.entities import AzureDataLakeGen2Datastore
from azure.ai.ml import MLClient

ml_client = MLClient.from_config()

store = AzureDataLakeGen2Datastore(
    name="",
    description="",
    account_name="",
    filesystem=""
)

ml_client.create_or_update(store)

创建 Azure 文件存储数据存储

from azure.ai.ml.entities import AzureFileDatastore
from azure.ai.ml.entities import AccountKeyConfiguration
from azure.ai.ml import MLClient

ml_client = MLClient.from_config()

store = AzureFileDatastore(
    name="file_example",
    description="Datastore pointing to an Azure File Share.",
    account_name="mytestfilestore",
    file_share_name="my-share",
    credentials=AccountKeyConfiguration(
        account_key= "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
    ),
)

ml_client.create_or_update(store)

创建 Azure Data Lake Storage Gen1 数据存储

from azure.ai.ml.entities import AzureDataLakeGen1Datastore
from azure.ai.ml import MLClient

ml_client = MLClient.from_config()

store = AzureDataLakeGen1Datastore(
    name="",
    store_name="",
    description="",
)

ml_client.create_or_update(store)

后续步骤