Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
The $near operator returns documents whose location field is near a specified point, sorted by distance. It requires a '2dsphere' index and returns documents from nearest to farthest.
Syntax
{
<location field>: {
$near: {
$geometry: {
type: "Point",
coordinates: [<longitude>, <latitude>]
},
$maxDistance: <distance in meters>,
$minDistance: <distance in meters>
}
}
}
Parameters
| Parameter | Description |
|---|---|
location field |
The field containing the GeoJSON Point |
$geometry |
GeoJSON Point object specifying the center point |
$maxDistance |
Optional. Maximum distance in meters from the center point |
$minDistance |
Optional. Minimum distance in meters from the center point |
Prerequisite
For better performance, start with creating the required 2dsphere index.
db.stores.createIndex({ "location": "2dsphere" })
Examples
Let's understand the usage with sample json from stores dataset.
{
"_id": "a715ab0f-4c6e-4e9d-a812-f2fab11ce0b6",
"name": "Lakeshore Retail | Holiday Supply Hub - Marvinfort",
"location": { "lat": -74.0427, "lon": 160.8154 },
"staff": { "employeeCount": { "fullTime": 9, "partTime": 18 } },
"sales": {
"salesByCategory": [ { "categoryName": "Stockings", "totalSales": 25731 } ],
"revenue": 25731
},
"promotionEvents": [
{
"eventName": "Mega Savings Extravaganza",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 6, "Day": 29 },
"endDate": { "Year": 2023, "Month": 7, "Day": 7 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 16 },
{ "categoryName": "Tree Ornaments", "discountPercentage": 8 }
]
},
{
"eventName": "Incredible Discount Days",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 9, "Day": 27 },
"endDate": { "Year": 2023, "Month": 10, "Day": 4 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 11 },
{ "categoryName": "Holiday Cards", "discountPercentage": 9 }
]
},
{
"eventName": "Massive Deal Mania",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 12, "Day": 26 },
"endDate": { "Year": 2024, "Month": 1, "Day": 2 }
},
"discounts": [
{ "categoryName": "Gift Bags", "discountPercentage": 21 },
{ "categoryName": "Bows", "discountPercentage": 19 }
]
},
{
"eventName": "Super Saver Soiree",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 3, "Day": 25 },
"endDate": { "Year": 2024, "Month": 4, "Day": 1 }
},
"discounts": [
{ "categoryName": "Tree Ornaments", "discountPercentage": 15 },
{ "categoryName": "Stockings", "discountPercentage": 14 }
]
},
{
"eventName": "Fantastic Savings Fiesta",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 6, "Day": 23 },
"endDate": { "Year": 2024, "Month": 6, "Day": 30 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 24 },
{ "categoryName": "Gift Wrap", "discountPercentage": 16 }
]
},
{
"eventName": "Price Plunge Party",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 9, "Day": 21 },
"endDate": { "Year": 2024, "Month": 9, "Day": 28 }
},
"discounts": [
{ "categoryName": "Holiday Tableware", "discountPercentage": 13 },
{ "categoryName": "Holiday Cards", "discountPercentage": 11 }
]
}
],
"company": "Lakeshore Retail",
"city": "Marvinfort",
"storeOpeningDate": { "$date": "2024-10-01T18:24:02.586Z" },
"lastUpdated": { "$timestamp": { "t": 1730485442, "i": 1 } },
"storeFeatures": 38
}
Example 1: Basic proximity search
The query retrieves the two closest stores to a specific geographic point (70.1272, 69.7296) using geospatial search. This query searches for locations closest to the given point and returns stores in ascending order of distance from the point.
db.stores.find({
'location': {
$near: {
$geometry: {
type: "Point",
coordinates: [69.7296, 70.1272] // [longitude, latitude]
}
}
}
}, {
name: 1,
location: 1
}).limit(2)
The first two results returned by this query are:
[
{
"_id": "3882eb86-5dd6-4701-9640-f670ccb67859",
"name": "Fourth Coffee | DJ Equipment Stop - Schuppestad",
"location": { "lat": 69.4923, "lon": 70.1851 }
},
{
"_id": "bbec6d3e-1666-45b4-8803-8b7ef8544845",
"name": "First Up Consultants | Baby Products Bargains - South Keenan",
"location": { "lat": 69.2158, "lon": 70.3328 }
}
]
Example 2: Using both Min and Max distance
The query retrieves stores within a 20 km to 200 km range from a specified point and calculates their distances in kilometers. This query searches in a "donut-shaped" area - finding stores that are at least 20 meters away but no more than 200 meters from the specified point.
db.stores.aggregate([
{
$geoNear: {
near: {
type: "Point",
coordinates: [70.3328, 69.2158]
},
distanceField: "distance",
minDistance: 20,
maxDistance: 200,
spherical: true
}
},
{
$project: {
name: 1,
location: 1,
distanceKm: { $divide: ["$distance", 1000] },
_id: 0
}
},
{ $limit: 2 }
])
Related content
- Review options for migrating from MongoDB to Azure Cosmos DB for MongoDB (vCore).
- Read more about feature compatibility with MongoDB.