Databricks Runtime 10.3 for ML (EoS)

Note

Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.

Databricks Runtime 10.3 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 10.3 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, and XGBoost. Databricks Runtime ML includes AutoML, a tool to automatically train machine learning pipelines. Databricks Runtime ML also supports distributed deep learning training using Horovod.

For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.

New features and improvements

Databricks Runtime 10.3 ML is built on top of Databricks Runtime 10.3. For information on what's new in Databricks Runtime 10.3, including Apache Spark MLlib and SparkR, see the Databricks Runtime 10.3 (EoS) release notes.

Enhancements to Databricks AutoML

The following enhancements have been made to Databricks AutoML.

AutoML now supports ARIMA model for forecasting

In addition to Prophet, AutoML now creates and evaluates ARIMA models for forecasting problems.

Exclude columns from dataset

When you use the AutoML API, you can specify columns that AutoML should ignore during its calculations. This is available only for classification and regression problems. See Azure Databricks AutoML Python API reference for details.

Exclude algorithm frameworks from an AutoML run

You can specify algorithm frameworks, such as scikit-learn, that AutoML should not consider as it develops models. See Advanced configurations and Azure Databricks AutoML Python API reference for details.

max_trials deprecated

The max_trials parameter is deprecated and will be removed in the next major Databricks Runtime ML release. Use timeout_minutes to control the duration of an AutoML run. Also, in Databricks Runtime 10.1 ML and above, AutoML incorporates early stopping; it will stop training and tuning models if the validation metric is no longer improving.

Enhancements to Databricks Feature Store

You can now apply point-in-time lookups to time series feature tables. See Point-in-time support using time series feature tables for details.

Databricks Autologging (GA)

Databricks Autologging is now generally available in Databricks Runtime 10.3 ML. Databricks Autologging is a no-code solution that provides automatic experiment tracking for machine learning training sessions on Azure Databricks. With Databricks Autologging, model parameters, metrics, files, and lineage information are automatically captured when you train models from a variety of popular machine learning libraries. Training sessions are recorded as MLflow Tracking Runs. Model files are also tracked so you can easily log them to the MLflow Model Registry and deploy them for real-time scoring with MLflow Model Serving.

See Databricks Autologging for more information.

System environment

The system environment in Databricks Runtime 10.3 ML differs from Databricks Runtime 10.3 as follows:

Libraries

The following sections list the libraries included in Databricks Runtime 10.3 ML that differ from those included in Databricks Runtime 10.3.

In this section:

Top-tier libraries

Databricks Runtime 10.3 ML includes the following top-tier libraries:

Python libraries

Databricks Runtime 10.3 ML uses Virtualenv for Python package management and includes many popular ML packages.

In addition to the packages specified in the in the following sections, Databricks Runtime 10.3 ML also includes the following packages:

  • hyperopt 0.2.7.db1
  • sparkdl 2.2.0-db5
  • feature_store 0.3.7
  • automl 1.6.0

Python libraries on CPU clusters

Library Version Library Version Library Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 click 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 holidays 0.12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
packaging 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prometheus-client 0.10.1
prompt-toolkit 3.0.17 prophet 1.0.1 protobuf 3.17.2
psutil 5.8.0 psycopg2 2.8.5 ptyprocess 0.7.0
pyarrow 4.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8
pybind11 2.9.0 pycparser 2.20 pydantic 1.8.2
Pygments 2.8.1 PyGObject 3.36.0 PyMeeus 0.5.11
PyNaCl 1.4.0 pyodbc 4.0.30 pyparsing 2.4.7
pyrsistent 0.17.3 pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6
python-dateutil 2.8.1 python-editor 1.0.4 python-engineio 4.3.0
python-socketio 5.4.1 pytz 2020.5 PyWavelets 1.1.1
PyYAML 5.4.1 pyzmq 20.0.0 regex 2021.4.4
requests 2.25.1 requests-oauthlib 1.3.0 requests-unixsocket 0.2.0
rsa 4.7.2 s3transfer 0.3.7 sacremoses 0.0.46
scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1
Send2Trash 1.5.0 setuptools 52.0.0 setuptools-git 1.2
shap 0.40.0 simplejson 3.17.2 six 1.15.0
slicer 0.0.7 smart-open 5.2.0 smmap 3.0.5
spacy 3.2.1 spacy-legacy 3.0.8 spacy-loggers 1.0.1
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.1 srsly 2.4.1
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tenacity 6.2.0 tensorboard 2.7.0
tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1
tensorflow-cpu 2.7.0 tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
thinc 8.0.12 threadpoolctl 2.1.0 tokenizers 0.10.3
torch 1.10.1+cpu torchvision 0.11.2+cpu tornado 6.1
tqdm 4.59.0 traitlets 5.0.5 transformers 4.15.0
typer 0.3.2 typing-extensions 3.7.4.3 ujson 4.0.2
unattended-upgrades 0.1 urllib3 1.25.11 virtualenv 20.4.1
visions 0.7.4 wasabi 0.8.2 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 0.57.0 Werkzeug 1.0.1
wheel 0.36.2 widgetsnbextension 3.5.1 wrapt 1.12.1
xgboost 1.5.1 zipp 3.4.1

Python libraries on GPU clusters

Library Version Library Version Library Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 click 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 holidays 0.12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
packaging 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.0
pycparser 2.20 pydantic 1.8.2 Pygments 2.8.1
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.4.0
pyodbc 4.0.30 pyparsing 2.4.7 pyrsistent 0.17.3
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6 python-dateutil 2.8.1
python-editor 1.0.4 python-engineio 4.3.0 python-socketio 5.4.1
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 requests 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 rsa 4.7.2
s3transfer 0.3.7 sacremoses 0.0.46 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.40.0
simplejson 3.17.2 six 1.15.0 slicer 0.0.7
smart-open 5.2.0 smmap 3.0.5 spacy 3.2.1
spacy-legacy 3.0.8 spacy-loggers 1.0.1 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.1 srsly 2.4.1 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.7 tangled-up-in-unicode 0.1.0
tenacity 6.2.0 tensorboard 2.7.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1 tensorflow 2.7.0
tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1 termcolor 1.1.0
terminado 0.9.4 testpath 0.4.4 thinc 8.0.12
threadpoolctl 2.1.0 tokenizers 0.10.3 torch 1.10.1+cu111
torchvision 0.11.2+cu111 tornado 6.1 tqdm 4.59.0
traitlets 5.0.5 transformers 4.15.0 typer 0.3.2
typing-extensions 3.7.4.3 ujson 4.0.2 unattended-upgrades 0.1
urllib3 1.25.11 virtualenv 20.4.1 visions 0.7.4
wasabi 0.8.2 wcwidth 0.2.5 webencodings 0.5.1
websocket-client 0.57.0 Werkzeug 1.0.1 wheel 0.36.2
widgetsnbextension 3.5.1 wrapt 1.12.1 xgboost 1.5.1
zipp 3.4.1

Spark packages containing Python modules

Spark Package Python Module Version
graphframes graphframes 0.8.2-db1-spark3.2

R libraries

The R libraries are identical to the R Libraries in Databricks Runtime 10.3.

Java and Scala libraries (Scala 2.12 cluster)

In addition to Java and Scala libraries in Databricks Runtime 10.3, Databricks Runtime 10.3 ML contains the following JARs:

CPU clusters

Group ID Artifact ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

GPU clusters

Group ID Artifact ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0