Databricks Runtime 7.0 ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in June 2020.
Databricks Runtime 7.0 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 7.0 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
New features and major changes
Databricks Runtime 7.0 ML is built on top of Databricks Runtime 7.0. For information on what's new in Databricks Runtime 7.0, including Apache Spark MLlib and SparkR, see the Databricks Runtime 7.0 (EoS) release notes.
GPU-aware scheduling
Databricks Runtime 7.0 ML supports GPU-aware scheduling from Apache Spark 3.0. Azure Databricks automatically configures it for you. See GPU scheduling.
Major changes to ML Python environment
This section describes the major changes to the pre-installed ML Python environment compared to Databricks Runtime 6.6 ML (EoS). You should also review the major changes to the base Python environment in Databricks Runtime 7.0 (EoS). For a full list of installed Python packages and their versions, see Python libraries.
Python packages upgraded
- tensorflow 1.15.0 -> 2.2.0
- tensorboard 1.15.0 -> 2.2.2
- pytorch 1.4.0 -> 1.5.0
- xgboost 0.90 -> 1.1.1
- sparkdl 1.6.0-db1 -> 2.1.0-db1
- hyperopt 0.2.2.db1 -> 0.2.4.db1
Python packages added
- lightgbm: 2.3.0
- nltk: 3.4.5
- petastorm: 0.9.2
- plotly: 4.5.2
Python packages removed
- argparse
- boto (use
boto3
instead) - colorama
- deprecated
- et-xmlfile
- fusepy
- html5lib
- jdcal
- keras (use
tensorflow.keras
instead) - keras-applications (use
tensorflow.keras.applications
instead) - llvmlite
- lxml
- nose
- nose-exclude
- numba
- openpyxl
- pathlib2
- ply
- pymongo
- singledispatch
- tensorboardX (use
torch.utils.tensorboard
instead) - virtualenv
- webencodings
Major changes to ML R environment
Databricks Runtime 7.0 ML includes an unmodified version of RStudio Server Open Source v1.2.5033 for which the source code can be found in GitHub. Read more about RStudio Server on Azure Databricks.
Changes to ML Spark packages, Java and Scala libraries
The following packages are upgraded. Some are upgraded to SNAPSHOT
releases that are compatible with Apache Spark 3.0:
- graphframes: 0.7.0-db1-spark2.4 -> 0.8.0-db2-spark3.0
- spark-tensorflow-connector: 1.15.0 (Scala 2.11) -> 1.15.0 (Scala 2.12)
- xgboost4j and xgboost4j-spark: 0.90 -> 1.0.0
- mleap-databricks-runtime: 0.17.0-4882dc3 (SNAPSHOT)
The following packages are removed:
- TensorFlow (Java)
- TensorFrames
- Deep Learning Pipelines for Apache Spark (HorovodRunner is available in Python)
Added conda and pip commands to support notebook-scoped Python libraries (public preview)
Starting with Databricks Runtime 7.0 ML, you can use %pip
and %conda
commands to manage Python libraries installed in a notebook session.
You can also use these commands to create a custom environment for a notebook and to reproduce this environment between notebooks.
To enable this feature, in cluster settings, set the Spark configuration spark.databricks.conda.condaMagic.enabled true
.
For more information, see Notebook-scoped Python libraries.
Deprecations and unsupported features
Databricks Runtime 7.0 ML does not support table access control. If you need table access control, we recommend that you use Databricks Runtime 7.0.
Known issues
- If you're logging an MLlib model in mleap format, when the
sample_input
argument is passed tomlflow.spark.log_model
it fails with an AttributeError. This issue is caused by an API change to mleap. To work around this issue, upgrade to MLflow 1.9.0. You can install MLflow 1.9.0 using Notebook-scoped Python libraries.
System environment
The system environment in Databricks Runtime 7.0 ML differs from Databricks Runtime 7.0 as follows:
- DBUtils: Databricks Runtime ML does not contain Library utility (dbutils.library) (legacy).
You can use
%pip
and%conda
commands instead. See Notebook-scoped Python libraries. - For GPU clusters, the following NVIDIA GPU libraries:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Libraries
The following sections list the libraries included in Databricks Runtime 7.0 ML that differ from those included in Databricks Runtime 7.0.
In this section:
Top-tier libraries
Databricks Runtime 7.0 ML includes the following top-tier libraries:
- GraphFrames
- Horovod and HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python libraries
Databricks Runtime 7.0 ML uses Conda for Python package management and includes many popular ML packages. The following section describes the Conda environment for Databricks Runtime 7.0 ML.
Python on CPU clusters
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.1=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-cpu==2.2.0
- tensorflow-estimator==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml
Python on GPU clusters
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.2=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-estimator==2.2.0
- tensorflow-gpu==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Spark packages containing Python modules
Spark Package | Python Module | Version |
---|---|---|
graphframes | graphframes | 0.8.0-db2-spark3.0 |
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 7.0 Beta.
Java and Scala libraries (Scala 2.12 cluster)
In addition to Java and Scala libraries in Databricks Runtime 7.0, Databricks Runtime 7.0 ML contains the following JARs:
Group ID | Artifact ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.0-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.0.0 |
ml.dmlc | xgboost4j_2.12 | 1.0.0 |
org.mlflow | mlflow-client | 1.8.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |