Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
This article provides the properties and schema for machine learning workspace events. For an introduction to event schemas, see Azure Event Grid event schema.
Azure Machine Learning emits the following event types:
Event type | Description |
---|---|
Microsoft.MachineLearningServices.ModelRegistered | Raised when a new Model or Model version has been successfully registered. |
Microsoft.MachineLearningServices.ModelDeployed | Raised when Model(s) have been successfully deployed to an Endpoint. |
Microsoft.MachineLearningServices.RunCompleted | Raised when a Run has been successfully completed. |
Microsoft.MachineLearningServices.DatasetDriftDetected | Raised when a Dataset drift monitor detects drift. |
Microsoft.MachineLearningServices.RunStatusChanged | Raised when a run status changes. |
When an event is triggered, the Event Grid service sends data about that event to subscribing endpoint. This section contains an example of what that data would look like for each event.
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "models/sklearn_regression_model:20",
"type": "Microsoft.MachineLearningServices.ModelRegistered",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ModelName": "sklearn_regression_model",
"ModelVersion": 20,
"ModelTags": {
"area": "diabetes",
"type": "regression"
},
"ModelProperties": {
"type": "test"
}
},
"specversion": "1.0"
}]
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "endpoints/my-sklearn-service",
"type": "Microsoft.MachineLearningServices.ModelDeployed",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ServiceName": "my-sklearn-service",
"ServiceComputeType": "ACI",
"ModelIds": "sklearn_regression_model:1,sklearn_regression_model:2",
"ServiceTags": {
"area": "diabetes",
"type": "regression"
},
"ServiceProperties": {
"type": "test"
}
},
"specversion": "1.0"
}]
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"type": "Microsoft.MachineLearningServices.RunCompleted",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
}
},
"specversion": "1.0"
}]
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "datadrifts/{}/runs/{}",
"type": "Microsoft.MachineLearningServices.DatasetDriftDetected",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"DataDriftId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef",
"DataDriftName": "myDriftMonitor",
"RunId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef_1571590300380",
"BaseDatasetId": "3c56d136-0f64-4657-a0e8-5162089a88a3",
"TargetDatasetId": "d7e74d2e-c972-4266-b5fb-6c9c182d2a74",
"DriftCoefficient": 0.83503490684792081,
"StartTime": "2019-07-04T00:00:00+00:00",
"EndTime": "2019-07-05T00:00:00+00:00"
},
"specversion": "1.0"
}]
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"type": "Microsoft.MachineLearningServices.RunStatusChanged",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
},
"runStatus": "failed"
},
"specversion": "1.0"
}]
An event has the following top-level data:
Property | Type | Description |
---|---|---|
source |
string | Full resource path to the event source. This field isn't writeable. Event Grid provides this value. |
subject |
string | Publisher-defined path to the event subject. |
type |
string | One of the registered event types for this event source. |
time |
string | The time the event is generated based on the provider's UTC time. |
id |
string | Unique identifier for the event. |
data |
object | Blob storage event data. |
specversion |
string | CloudEvents schema specification version. |
The data object has the following properties for each event type:
Property | Type | Description |
---|---|---|
ModelName |
string | The name of the model that was registered. |
ModelVersion |
string | The version of the model that was registered. |
ModelTags |
object | The tags of the model that was registered. |
ModelProperties |
object | The properties of the model that was registered. |
Property | Type | Description |
---|---|---|
ServiceName |
string | The name of the deployed service. |
ServiceComputeType |
string | The compute type (for example, ACI, AKS) of the deployed service. |
ModelIds |
string | A comma-separated list of model IDs. The IDs of the models deployed in the service. |
ServiceTags |
object | The tags of the deployed service. |
ServiceProperties |
object | The properties of the deployed service. |
Property | Type | Description |
---|---|---|
experimentId |
string | The ID of the experiment that the run belongs to. |
experimentName |
string | The name of the experiment that the run belongs to. |
runId |
string | The ID of the Run that was completed. |
runType |
string | The Run Type of the completed Run. |
runTags |
object | The tags of the completed Run. |
runProperties |
object | The properties of the completed Run. |
Property | Type | Description |
---|---|---|
DataDriftId |
string | The ID of the data drift monitor that triggered the event. |
DataDriftName |
string | The name of the data drift monitor that triggered the event. |
RunId |
string | The ID of the Run that detected data drift. |
BaseDatasetId |
string | The ID of the base Dataset used to detect drift. |
TargetDatasetId |
string | The ID of the target Dataset used to detect drift. |
DriftCoefficient |
double | The coefficient result that triggered the event. |
StartTime |
datetime | The start time of the target dataset time series that resulted in drift detection. |
EndTime |
datetime | The end time of the target dataset time series that resulted in drift detection. |
Property | Type | Description |
---|---|---|
experimentId |
string | The ID of the experiment that the run belongs to. |
experimentName |
string | The name of the experiment that the run belongs to. |
runId |
string | The ID of the Run that was completed. |
runType |
string | The Run Type of the completed Run. |
runTags |
object | The tags of the completed Run. |
runProperties |
object | The properties of the completed Run. |
runStatus |
string | The status of the Run. |
Title | Description |
---|---|
Consume Azure Machine Learning events | Overview of integrating Azure Machine Learning with Event Grid. |
- For an introduction to Azure Event Grid, see What is Event Grid?
- For more information about creating an Azure Event Grid subscription, see Event Grid subscription schema
- For an introduction to using Azure Event Grid with Azure Machine Learning, see Consume Azure Machine Learning events
- For an example of using Azure Event Grid with Azure Machine Learning, see Create event driven machine learning workflows