使用 ONNX 模型和 SQL 机器学习部署和预测
重要
Azure SQL Edge 将于 2025 年 9 月 30 日停用。 有关详细信息和迁移选项,请参阅停用通知。
注意
Azure SQL Edge 不再支持 ARM64 平台。
在本快速入门中,你将了解如何训练模型,将其转换为 ONNX 并部署到 Azure SQL Edge,然后使用上传的 ONNX 模型对数据运行本机 PREDICT。
本快速入门基于 scikit-learn 并使用 Boston Housing 数据集。
开始之前
如果使用的是 Azure SQL Edge,但尚未部署 Azure SQL Edge 模块,请按照使用 Azure 门户部署 SQL Edge 的步骤进行操作。
安装本快速入门所需的 Python 包:
- 打开连接到 Python 3 Kernel 的新笔记本。
- 选择“管理包”
- 在“已安装”选项卡中,在已安装包列表中查找以下 Python 包。 如果未安装这些包中的任何一个,请选择“添加新包”选项卡,搜索该包,然后选择“安装”。
- scikit-learn
- numpy
- onnxmltools
- onnxruntime
- pyodbc
- setuptools
- skl2onnx
- sqlalchemy
对于下面方案中的每个脚本部分,请将其输入到 Azure Data Studio 笔记本的单元格中,然后运行单元格。
训练管道
拆分数据集,以使用功能来预测房子的中值。
import numpy as np
import onnxmltools
import onnxruntime as rt
import pandas as pd
import skl2onnx
import sklearn
import sklearn.datasets
from sklearn.datasets import load_boston
boston = load_boston()
boston
df = pd.DataFrame(data=np.c_[boston['data'], boston['target']], columns=boston['feature_names'].tolist() + ['MEDV'])
target_column = 'MEDV'
# Split the data frame into features and target
x_train = pd.DataFrame(df.drop([target_column], axis = 1))
y_train = pd.DataFrame(df.iloc[:,df.columns.tolist().index(target_column)])
print("\n*** Training dataset x\n")
print(x_train.head())
print("\n*** Training dataset y\n")
print(y_train.head())
输出:
*** Training dataset x
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0
PTRATIO B LSTAT
0 15.3 396.90 4.98
1 17.8 396.90 9.14
2 17.8 392.83 4.03
3 18.7 394.63 2.94
4 18.7 396.90 5.33
*** Training dataset y
0 24.0
1 21.6
2 34.7
3 33.4
4 36.2
Name: MEDV, dtype: float64
创建一个管道来训练 LinearRegression 模型。 还可以使用其他回归模型。
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
continuous_transformer = Pipeline(steps=[('scaler', RobustScaler())])
# All columns are numeric - normalize them
preprocessor = ColumnTransformer(
transformers=[
('continuous', continuous_transformer, [i for i in range(len(x_train.columns))])])
model = Pipeline(
steps=[
('preprocessor', preprocessor),
('regressor', LinearRegression())])
# Train the model
model.fit(x_train, y_train)
检查模型的准确性,然后计算 R2 评分和均方误差。
# Score the model
from sklearn.metrics import r2_score, mean_squared_error
y_pred = model.predict(x_train)
sklearn_r2_score = r2_score(y_train, y_pred)
sklearn_mse = mean_squared_error(y_train, y_pred)
print('*** Scikit-learn r2 score: {}'.format(sklearn_r2_score))
print('*** Scikit-learn MSE: {}'.format(sklearn_mse))
输出:
*** Scikit-learn r2 score: 0.7406426641094094
*** Scikit-learn MSE: 21.894831181729206
将模型转换为 ONNX
将数据类型转换为支持的 SQL 数据类型。 还需要对其他数据帧进行此转换。
from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, DoubleTensorType
def convert_dataframe_schema(df, drop=None, batch_axis=False):
inputs = []
nrows = None if batch_axis else 1
for k, v in zip(df.columns, df.dtypes):
if drop is not None and k in drop:
continue
if v == 'int64':
t = Int64TensorType([nrows, 1])
elif v == 'float32':
t = FloatTensorType([nrows, 1])
elif v == 'float64':
t = DoubleTensorType([nrows, 1])
else:
raise Exception("Bad type")
inputs.append((k, t))
return inputs
使用 skl2onnx
,将 LinearRegression 模型转换为 ONNX 格式,并将其保存在本地。
# Convert the scikit model to onnx format
onnx_model = skl2onnx.convert_sklearn(model, 'Boston Data', convert_dataframe_schema(x_train), final_types=[('variable1',FloatTensorType([1,1]))])
# Save the onnx model locally
onnx_model_path = 'boston1.model.onnx'
onnxmltools.utils.save_model(onnx_model, onnx_model_path)
注意
如果 SQL Edge 中和 skl2onnx 包中的 ONNX 运行时版本不匹配,你可能需要为 skl2onnx.convert_sklearn 函数设置 target_opset
参数。 有关详细信息,请参阅 SQL Edge 发行说明以获取与版本对应的 ONNX 运行时版本,并根据 ONNX 向后兼容性矩阵为 ONNX 运行时选取 target_opset
。
测试 ONNX 模型
将模型转换为 ONNX 格式后,对模型进行评分,以显示性能几乎没有下降。
注意
ONNX 运行时使用浮点数而不是双精度数,因此可能会出现小差异。
import onnxruntime as rt
sess = rt.InferenceSession(onnx_model_path)
y_pred = np.full(shape=(len(x_train)), fill_value=np.nan)
for i in range(len(x_train)):
inputs = {}
for j in range(len(x_train.columns)):
inputs[x_train.columns[j]] = np.full(shape=(1,1), fill_value=x_train.iloc[i,j])
sess_pred = sess.run(None, inputs)
y_pred[i] = sess_pred[0][0][0]
onnx_r2_score = r2_score(y_train, y_pred)
onnx_mse = mean_squared_error(y_train, y_pred)
print()
print('*** Onnx r2 score: {}'.format(onnx_r2_score))
print('*** Onnx MSE: {}\n'.format(onnx_mse))
print('R2 Scores are equal' if sklearn_r2_score == onnx_r2_score else 'Difference in R2 scores: {}'.format(abs(sklearn_r2_score - onnx_r2_score)))
print('MSE are equal' if sklearn_mse == onnx_mse else 'Difference in MSE scores: {}'.format(abs(sklearn_mse - onnx_mse)))
print()
输出:
*** Onnx r2 score: 0.7406426691136831
*** Onnx MSE: 21.894830759270633
R2 Scores are equal
MSE are equal
插入 ONNX 模型
将模型存储在 Azure SQL Edge 数据库 onnx
中的表 models
中。 在连接字符串中,指定“服务器地址”、“用户名”和“密码”。
import pyodbc
server = '' # SQL Server IP address
username = '' # SQL Server username
password = '' # SQL Server password
# Connect to the master DB to create the new onnx database
connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=master;UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(connection_string, autocommit=True)
cursor = conn.cursor()
database = 'onnx'
query = 'DROP DATABASE IF EXISTS ' + database
cursor.execute(query)
conn.commit()
# Create onnx database
query = 'CREATE DATABASE ' + database
cursor.execute(query)
conn.commit()
# Connect to onnx database
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string, autocommit=True)
cursor = conn.cursor()
table_name = 'models'
# Drop the table if it exists
query = f'drop table if exists {table_name}'
cursor.execute(query)
conn.commit()
# Create the model table
query = f'create table {table_name} ( ' \
f'[id] [int] IDENTITY(1,1) NOT NULL, ' \
f'[data] [varbinary](max) NULL, ' \
f'[description] varchar(1000))'
cursor.execute(query)
conn.commit()
# Insert the ONNX model into the models table
query = f"insert into {table_name} ([description], [data]) values ('Onnx Model',?)"
model_bits = onnx_model.SerializeToString()
insert_params = (pyodbc.Binary(model_bits))
cursor.execute(query, insert_params)
conn.commit()
加载数据
将数据加载到 SQL 中。
首先,创建两个表,“功能”和“目标”,以存储 Boston housing 数据集的子集。
- “功能”包含用于预测目标中值的所有数据。
- “目标”包含数据集中每个记录的中值。
import sqlalchemy
from sqlalchemy import create_engine
import urllib
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string)
cursor = conn.cursor()
features_table_name = 'features'
# Drop the table if it exists
query = f'drop table if exists {features_table_name}'
cursor.execute(query)
conn.commit()
# Create the features table
query = \
f'create table {features_table_name} ( ' \
f' [CRIM] float, ' \
f' [ZN] float, ' \
f' [INDUS] float, ' \
f' [CHAS] float, ' \
f' [NOX] float, ' \
f' [RM] float, ' \
f' [AGE] float, ' \
f' [DIS] float, ' \
f' [RAD] float, ' \
f' [TAX] float, ' \
f' [PTRATIO] float, ' \
f' [B] float, ' \
f' [LSTAT] float, ' \
f' [id] int)'
cursor.execute(query)
conn.commit()
target_table_name = 'target'
# Create the target table
query = \
f'create table {target_table_name} ( ' \
f' [MEDV] float, ' \
f' [id] int)'
x_train['id'] = range(1, len(x_train)+1)
y_train['id'] = range(1, len(y_train)+1)
print(x_train.head())
print(y_train.head())
最后,使用 sqlalchemy
将 x_train
和 y_train
pandas 数据帧分别插入表 features
和 target
。
db_connection_string = 'mssql+pyodbc://' + username + ':' + password + '@' + server + '/' + database + '?driver=ODBC+Driver+17+for+SQL+Server'
sql_engine = sqlalchemy.create_engine(db_connection_string)
x_train.to_sql(features_table_name, sql_engine, if_exists='append', index=False)
y_train.to_sql(target_table_name, sql_engine, if_exists='append', index=False)
现在可以查看数据库中的数据了。
使用 ONNX 模型运行 PREDICT
通过 SQL 中的模型,使用上传的 ONNX 模型对数据运行本机 PREDICT。
注意
将笔记本内核更改为 SQL,以运行剩余单元格。
USE onnx
DECLARE @model VARBINARY(max) = (
SELECT DATA
FROM dbo.models
WHERE id = 1
);
WITH predict_input
AS (
SELECT TOP (1000) [id],
CRIM,
ZN,
INDUS,
CHAS,
NOX,
RM,
AGE,
DIS,
RAD,
TAX,
PTRATIO,
B,
LSTAT
FROM [dbo].[features]
)
SELECT predict_input.id,
p.variable1 AS MEDV
FROM PREDICT(MODEL = @model, DATA = predict_input, RUNTIME = ONNX) WITH (variable1 FLOAT) AS p;