使用 Databricks 资产捆绑包和 GitHub Actions 运行 CI/CD 工作流
本文介绍了如何使用 GitHub Actions 和 Databricks 资产捆绑包在 GitHub 中运行 CI/CD(持续集成/持续部署)工作流。 请参阅什么是 Databricks 资产捆绑包?
可以使用 GitHub Actions 以及 Databricks CLI bundle
命令从 GitHub 存储库中自动执行、自定义和运行 CI/CD 工作流。
可以将 GitHub Actions YAML 文件(例如以下内容)添加到存储库的.github/workflows
目录。 以下示例 GitHub Actions YAML 文件在名为“qa”的预生产目标(如捆绑配置文件中所定义)内验证、部署和运行捆绑中的指定作业。 此示例 GitHub Actions YAML 文件依赖于以下内容:
- 存储库根目录中的捆绑配置文件(通过 GitHub Actions YAML 文件的设置
working-directory: .
显式声明)(如果捆绑配置文件已在存储库的根目录中,则可以省略此设置)。此捆绑配置文件定义名为“my-job
”的 Azure Databricks 工作流和名为“qa
”的目标。 请参阅 Databricks 资产捆绑包配置。 - 名为
SP_TOKEN
的 GitHub 机密,表示与部署和运行此捆绑包的 Azure Databricks 工作区相关联的 Azure Databricks 服务主体的 Azure Databricks 访问令牌。 请参阅加密的机密。
# This workflow validates, deploys, and runs the specified bundle
# within a pre-production target named "qa".
name: "QA deployment"
# Ensure that only a single job or workflow using the same concurrency group
# runs at a time.
concurrency: 1
# Trigger this workflow whenever a pull request is opened against the repo's
# main branch or an existing pull request's head branch is updated.
on:
pull_request:
types:
- opened
- synchronize
branches:
- main
jobs:
# Used by the "pipeline_update" job to deploy the bundle.
# Bundle validation is automatically performed as part of this deployment.
# If validation fails, this workflow fails.
deploy:
name: "Deploy bundle"
runs-on: ubuntu-latest
steps:
# Check out this repo, so that this workflow can access it.
- uses: actions/checkout@v3
# Download the Databricks CLI.
# See https://github.com/databricks/setup-cli
- uses: databricks/setup-cli@main
# Deploy the bundle to the "qa" target as defined
# in the bundle's settings file.
- run: databricks bundle deploy
working-directory: .
env:
DATABRICKS_TOKEN: ${{ secrets.SP_TOKEN }}
DATABRICKS_BUNDLE_ENV: qa
# Validate, deploy, and then run the bundle.
pipeline_update:
name: "Run pipeline update"
runs-on: ubuntu-latest
# Run the "deploy" job first.
needs:
- deploy
steps:
# Check out this repo, so that this workflow can access it.
- uses: actions/checkout@v3
# Use the downloaded Databricks CLI.
- uses: databricks/setup-cli@main
# Run the Databricks workflow named "my-job" as defined in the
# bundle that was just deployed.
- run: databricks bundle run my-job --refresh-all
working-directory: .
env:
DATABRICKS_TOKEN: ${{ secrets.SP_TOKEN }}
DATABRICKS_BUNDLE_ENV: qa
以下 GitHub Actions YAML 文件可以在与前面文件相同的存储库中存在。 此文件在名为“prod”的生产目标(如捆绑配置文件中所定义)内验证、部署和运行指定捆绑。 此示例 GitHub Actions YAML 文件依赖于以下内容:
- 存储库根目录中的捆绑配置文件(通过 GitHub Actions YAML 文件的设置
working-directory: .
显式声明)(如果捆绑配置文件已在存储库的根目录中,则可以省略此设置)。 此捆绑包配置文件定义了名为my-job
的 Azure Databricks 工作流和名为prod
的目标。 请参阅 Databricks 资产捆绑包配置。 - 名为
SP_TOKEN
的 GitHub 机密,表示与部署和运行此捆绑包的 Azure Databricks 工作区相关联的 Azure Databricks 服务主体的 Azure Databricks 访问令牌。 请参阅加密的机密。
# This workflow validates, deploys, and runs the specified bundle
# within a production target named "prod".
name: "Production deployment"
# Ensure that only a single job or workflow using the same concurrency group
# runs at a time.
concurrency: 1
# Trigger this workflow whenever a pull request is pushed to the repo's
# main branch.
on:
push:
branches:
- main
jobs:
deploy:
name: "Deploy bundle"
runs-on: ubuntu-latest
steps:
# Check out this repo, so that this workflow can access it.
- uses: actions/checkout@v3
# Download the Databricks CLI.
# See https://github.com/databricks/setup-cli
- uses: databricks/setup-cli@main
# Deploy the bundle to the "prod" target as defined
# in the bundle's settings file.
- run: databricks bundle deploy
working-directory: .
env:
DATABRICKS_TOKEN: ${{ secrets.SP_TOKEN }}
DATABRICKS_BUNDLE_ENV: prod
# Validate, deploy, and then run the bundle.
pipeline_update:
name: "Run pipeline update"
runs-on: ubuntu-latest
# Run the "deploy" job first.
needs:
- deploy
steps:
# Check out this repo, so that this workflow can access it.
- uses: actions/checkout@v3
# Use the downloaded Databricks CLI.
- uses: databricks/setup-cli@main
# Run the Databricks workflow named "my-job" as defined in the
# bundle that was just deployed.
- run: databricks bundle run my-job --refresh-all
working-directory: .
env:
DATABRICKS_TOKEN: ${{ secrets.SP_TOKEN }}
DATABRICKS_BUNDLE_ENV: prod