Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
In this article
Applies to: ✅ Azure Data Explorer ✅ Azure Monitor ✅ Microsoft Sentinel
Calculates the length of the boundary of a polygon or a multipolygon on Earth.
geo_polygon_perimeter(
polygon)
Learn more about syntax conventions.
Name | Type | Required | Description |
---|---|---|---|
polygon | dynamic |
✔️ | Polygon or multipolygon in the GeoJSON format. |
The length of the boundary of polygon or a multipolygon, in meters, on Earth. If polygon or multipolygon are invalid, the query will produce a null result.
Note
- The geospatial coordinates are interpreted as represented by the WGS-84 coordinate reference system.
- The geodetic datum used for measurements on Earth is a sphere. Polygon edges are geodesics on the sphere.
- If input polygon edges are straight cartesian lines, consider using geo_polygon_densify() to convert planar edges to geodesics.
- If input is a multipolygon and contains more than one polygon, the result will be the length of the boundary of polygons union.
Polygon definition and constraints
dynamic({"type": "Polygon","coordinates": [ LinearRingShell, LinearRingHole_1, ..., LinearRingHole_N ]})
dynamic({"type": "MultiPolygon","coordinates": [[ LinearRingShell, LinearRingHole_1, ..., LinearRingHole_N ], ..., [LinearRingShell, LinearRingHole_1, ..., LinearRingHole_M]]})
- LinearRingShell is required and defined as a
counterclockwise
ordered array of coordinates [[lng_1,lat_1],...,[lng_i,lat_i],...,[lng_j,lat_j],...,[lng_1,lat_1]]. There can be only one shell. - LinearRingHole is optional and defined as a
clockwise
ordered array of coordinates [[lng_1,lat_1],...,[lng_i,lat_i],...,[lng_j,lat_j],...,[lng_1,lat_1]]. There can be any number of interior rings and holes. - LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
- Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
- LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
- LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
- LinearRings must not cross and must not share edges. LinearRings may share vertices.
The following example calculates the NYC Central Park perimeter, in meters.
let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print perimeter = geo_polygon_perimeter(central_park)
Output
perimeter |
---|
9930.30149604938 |
The following example performs union of polygons in multipolygon and calculates perimeter of the unified polygon.
let polygons = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]],[[[-73.94262313842773,40.775991804565585],[-73.98107528686523,40.791849155467695],[-73.99600982666016,40.77092185281977],[-73.96150588989258,40.75609977566361],[-73.94262313842773,40.775991804565585]]]]});
print perimeter = geo_polygon_perimeter(polygons)
Output
perimeter |
---|
15943.5384578745 |
The following example returns True because of the invalid polygon.
print is_invalid = isnull(geo_polygon_perimeter(dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]})))
Output
is_invalid |
---|
True |