Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
In this article
Applies to: ✅ Azure Data Explorer
Returns an estimate for the specified percentile of the ValueColumn population in a rolling (sliding) BinsPerWindow size window per BinSize.
The plugin is invoked with the evaluate
operator.
T | evaluate
rolling_percentile(
ValueColumn,
Percentile,
IndexColumn,
BinSize,
BinsPerWindow [,
dim1,
dim2,
...] )
Learn more about syntax conventions.
Name | Type | Required | Description |
---|---|---|---|
T | string |
✔️ | The input tabular expression. |
ValueColumn | string |
✔️ | The name of the column used to calculate the percentiles. |
Percentile | int, long, or real | ✔️ | Scalar with the percentile to calculate. |
IndexColumn | string |
✔️ | The name of the column over which to run the rolling window. |
BinSize | int, long, real, datetime, or timespan | ✔️ | Scalar with size of the bins to apply over the IndexColumn. |
BinsPerWindow | int |
✔️ | The number of bins included in each window. |
dim1, dim2, ... | string |
A list of the dimensions columns to slice by. |
Returns a table with a row per each bin (and combination of dimensions if specified) that has the rolling percentile of values in the window ending at the bin (inclusive). Output table schema is:
IndexColumn | dim1 | ... | dim_n | rolling_BinsPerWindow_percentile_ValueColumn_Pct |
---|
The next query calculates a 3-day median value in daily granularity. Each row in the output represents the median value for the last 3 bins (days), including the bin itself.
let T =
range idx from 0 to 24 * 10 - 1 step 1
| project Timestamp = datetime(2018-01-01) + 1h * idx, val=idx + 1
| extend EvenOrOdd = iff(val % 2 == 0, "Even", "Odd");
T
| evaluate rolling_percentile(val, 50, Timestamp, 1d, 3)
Output
Timestamp | rolling_3_percentile_val_50 |
---|---|
2018-01-01 00:00:00.0000000 | 12 |
2018-01-02 00:00:00.0000000 | 24 |
2018-01-03 00:00:00.0000000 | 36 |
2018-01-04 00:00:00.0000000 | 60 |
2018-01-05 00:00:00.0000000 | 84 |
2018-01-06 00:00:00.0000000 | 108 |
2018-01-07 00:00:00.0000000 | 132 |
2018-01-08 00:00:00.0000000 | 156 |
2018-01-09 00:00:00.0000000 | 180 |
2018-01-10 00:00:00.0000000 | 204 |
Same example from above, but now also calculates the rolling window partitioned for each value of the dimension.
let T =
range idx from 0 to 24 * 10 - 1 step 1
| project Timestamp = datetime(2018-01-01) + 1h * idx, val=idx + 1
| extend EvenOrOdd = iff(val % 2 == 0, "Even", "Odd");
T
| evaluate rolling_percentile(val, 50, Timestamp, 1d, 3, EvenOrOdd)
Output
Timestamp | EvenOrOdd | rolling_3_percentile_val_50 |
---|---|---|
2018-01-01 00:00:00.0000000 | Even | 12 |
2018-01-02 00:00:00.0000000 | Even | 24 |
2018-01-03 00:00:00.0000000 | Even | 36 |
2018-01-04 00:00:00.0000000 | Even | 60 |
2018-01-05 00:00:00.0000000 | Even | 84 |
2018-01-06 00:00:00.0000000 | Even | 108 |
2018-01-07 00:00:00.0000000 | Even | 132 |
2018-01-08 00:00:00.0000000 | Even | 156 |
2018-01-09 00:00:00.0000000 | Even | 180 |
2018-01-10 00:00:00.0000000 | Even | 204 |
2018-01-01 00:00:00.0000000 | Odd | 11 |
2018-01-02 00:00:00.0000000 | Odd | 23 |
2018-01-03 00:00:00.0000000 | Odd | 35 |
2018-01-04 00:00:00.0000000 | Odd | 59 |
2018-01-05 00:00:00.0000000 | Odd | 83 |
2018-01-06 00:00:00.0000000 | Odd | 107 |
2018-01-07 00:00:00.0000000 | Odd | 131 |
2018-01-08 00:00:00.0000000 | Odd | 155 |
2018-01-09 00:00:00.0000000 | Odd | 179 |
2018-01-10 00:00:00.0000000 | Odd | 203 |